GADES:基于图的语义相似度度量

I. Ribón, Maria-Esther Vidal, B. Kämpgen, York Sure-Vetter
{"title":"GADES:基于图的语义相似度度量","authors":"I. Ribón, Maria-Esther Vidal, B. Kämpgen, York Sure-Vetter","doi":"10.1145/2993318.2993343","DOIUrl":null,"url":null,"abstract":"Knowledge graphs encode semantics that describes resources in terms of several aspects, e.g., neighbors, class hierarchies, or node degrees. Assessing relatedness of knowledge graph entities is crucial for several data-driven tasks, e.g., ranking, clustering, or link discovery. However, existing similarity measures consider aspects in isolation when determining entity relatedness. We address the problem of similarity assessment between knowledge graph entities, and devise GADES. GADES relies on aspect similarities and computes a similarity measure as the combination of these similarity values. We empirically evaluate the accuracy of GADES on knowledge graphs from different domains, e.g., proteins, and news. Experiment results indicate that GADES exhibits higher correlation with gold standards than studied existing approaches. Thus, these results suggest that similarity measures should not consider aspects in isolation, but combinations of them to precisely determine relatedness.","PeriodicalId":177013,"journal":{"name":"Proceedings of the 12th International Conference on Semantic Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"GADES: A Graph-based Semantic Similarity Measure\",\"authors\":\"I. Ribón, Maria-Esther Vidal, B. Kämpgen, York Sure-Vetter\",\"doi\":\"10.1145/2993318.2993343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graphs encode semantics that describes resources in terms of several aspects, e.g., neighbors, class hierarchies, or node degrees. Assessing relatedness of knowledge graph entities is crucial for several data-driven tasks, e.g., ranking, clustering, or link discovery. However, existing similarity measures consider aspects in isolation when determining entity relatedness. We address the problem of similarity assessment between knowledge graph entities, and devise GADES. GADES relies on aspect similarities and computes a similarity measure as the combination of these similarity values. We empirically evaluate the accuracy of GADES on knowledge graphs from different domains, e.g., proteins, and news. Experiment results indicate that GADES exhibits higher correlation with gold standards than studied existing approaches. Thus, these results suggest that similarity measures should not consider aspects in isolation, but combinations of them to precisely determine relatedness.\",\"PeriodicalId\":177013,\"journal\":{\"name\":\"Proceedings of the 12th International Conference on Semantic Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th International Conference on Semantic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2993318.2993343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993318.2993343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

知识图对从几个方面描述资源的语义进行编码,例如,邻居、类层次结构或节点度。评估知识图谱实体的相关性对于一些数据驱动的任务至关重要,例如,排名、聚类或链接发现。然而,现有的相似性度量在确定实体相关性时孤立地考虑各个方面。我们解决了知识图谱实体之间的相似性评估问题,并设计了GADES。GADES依赖于方面相似性,并计算出这些相似性值的组合的相似性度量。我们从经验上评估了GADES在不同领域的知识图谱上的准确性,例如蛋白质和新闻。实验结果表明,GADES与金标准的相关性高于已有的方法。因此,这些结果表明相似性测量不应该孤立地考虑各个方面,而应该将它们结合起来精确地确定相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GADES: A Graph-based Semantic Similarity Measure
Knowledge graphs encode semantics that describes resources in terms of several aspects, e.g., neighbors, class hierarchies, or node degrees. Assessing relatedness of knowledge graph entities is crucial for several data-driven tasks, e.g., ranking, clustering, or link discovery. However, existing similarity measures consider aspects in isolation when determining entity relatedness. We address the problem of similarity assessment between knowledge graph entities, and devise GADES. GADES relies on aspect similarities and computes a similarity measure as the combination of these similarity values. We empirically evaluate the accuracy of GADES on knowledge graphs from different domains, e.g., proteins, and news. Experiment results indicate that GADES exhibits higher correlation with gold standards than studied existing approaches. Thus, these results suggest that similarity measures should not consider aspects in isolation, but combinations of them to precisely determine relatedness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信