{"title":"图的最小优偏心支配能","authors":"R. Tejaskumar, A. Ismayil","doi":"10.9734/arjom/2023/v19i9715","DOIUrl":null,"url":null,"abstract":"For a graph G = (V, E) of order K2 the minimum superior eccentric dominating energy SEed(G) is the sum of the eigen values obtained from the minimum superior eccentric dominating K x K matrix Ased (G) = (Seij) In this paper SEed(G) of standard graphs are computed. Properties, upper and lower bounds for SEed(G) are established.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Minimum Superior Eccentric Dominating Energy of Graphs\",\"authors\":\"R. Tejaskumar, A. Ismayil\",\"doi\":\"10.9734/arjom/2023/v19i9715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph G = (V, E) of order K2 the minimum superior eccentric dominating energy SEed(G) is the sum of the eigen values obtained from the minimum superior eccentric dominating K x K matrix Ased (G) = (Seij) In this paper SEed(G) of standard graphs are computed. Properties, upper and lower bounds for SEed(G) are established.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i9715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i9715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于K2阶图G = (V, E),最小优偏心控制能SEed(G)是由最小优偏心控制K x K矩阵Ased (G) = (Seij)得到的特征值的和,本文计算了标准图的SEed(G)。建立了SEed(G)的性质、上界和下界。
The Minimum Superior Eccentric Dominating Energy of Graphs
For a graph G = (V, E) of order K2 the minimum superior eccentric dominating energy SEed(G) is the sum of the eigen values obtained from the minimum superior eccentric dominating K x K matrix Ased (G) = (Seij) In this paper SEed(G) of standard graphs are computed. Properties, upper and lower bounds for SEed(G) are established.