寻找最小生成树的一个统一证明

Ray-Ming Chen
{"title":"寻找最小生成树的一个统一证明","authors":"Ray-Ming Chen","doi":"10.1145/3409915.3409925","DOIUrl":null,"url":null,"abstract":"Finding a minimal spanning tree (MST) has attracted a lot of researchers. There are many approaches and ways to find a MST of a network. In this article, we demonstrate a systematic approach based on natural induction over the set of nodes to reach a final MST. The approach is to label the given network and find a MST of it by growing trees based on the induction of labelled nodes.","PeriodicalId":114746,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Mathematics and Statistics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Unified Proof for Finding a Minimal Spanning Tree\",\"authors\":\"Ray-Ming Chen\",\"doi\":\"10.1145/3409915.3409925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding a minimal spanning tree (MST) has attracted a lot of researchers. There are many approaches and ways to find a MST of a network. In this article, we demonstrate a systematic approach based on natural induction over the set of nodes to reach a final MST. The approach is to label the given network and find a MST of it by growing trees based on the induction of labelled nodes.\",\"PeriodicalId\":114746,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Mathematics and Statistics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409915.3409925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409915.3409925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

寻找最小生成树(MST)吸引了许多研究者。寻找网络的MST有很多方法和方法。在本文中,我们演示了一种基于节点集的自然归纳的系统方法,以达到最终的MST。该方法是对给定的网络进行标记,并通过基于标记节点的归纳生长树来找到它的MST。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Proof for Finding a Minimal Spanning Tree
Finding a minimal spanning tree (MST) has attracted a lot of researchers. There are many approaches and ways to find a MST of a network. In this article, we demonstrate a systematic approach based on natural induction over the set of nodes to reach a final MST. The approach is to label the given network and find a MST of it by growing trees based on the induction of labelled nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信