一维束模与希格斯束模的上同调无关性

D. Maulik, Junliang Shen
{"title":"一维束模与希格斯束模的上同调无关性","authors":"D. Maulik, Junliang Shen","doi":"10.2140/gt.2023.27.1539","DOIUrl":null,"url":null,"abstract":"We prove that the intersection cohomology (together with the perverse and the Hodge filtrations) for the moduli space of one-dimensional semistable sheaves supported in an ample curve class on a toric del Pezzo surface is independent of the Euler characteristic of the sheaves. We also prove an analogous result for the moduli space of semistable Higgs bundles with respect to an effective divisor $D$ of degree $\\mathrm{deg}(D)>2g-2$. Our results confirm the cohomological $\\chi$-independence conjecture by Bousseau for $\\mathbb{P}^2$, and verify Toda's conjecture for Gopakumar-Vafa invariants for certain local curves and local surfaces. \nFor the proof, we combine a generalized version of Ngo's support theorem, a dimension estimate for the stacky Hilbert-Chow morphism, and a splitting theorem for the morphism from the moduli stack to the good GIT quotient.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Cohomological χ–independence for moduli of\\none-dimensional sheaves and moduli of Higgs bundles\",\"authors\":\"D. Maulik, Junliang Shen\",\"doi\":\"10.2140/gt.2023.27.1539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the intersection cohomology (together with the perverse and the Hodge filtrations) for the moduli space of one-dimensional semistable sheaves supported in an ample curve class on a toric del Pezzo surface is independent of the Euler characteristic of the sheaves. We also prove an analogous result for the moduli space of semistable Higgs bundles with respect to an effective divisor $D$ of degree $\\\\mathrm{deg}(D)>2g-2$. Our results confirm the cohomological $\\\\chi$-independence conjecture by Bousseau for $\\\\mathbb{P}^2$, and verify Toda's conjecture for Gopakumar-Vafa invariants for certain local curves and local surfaces. \\nFor the proof, we combine a generalized version of Ngo's support theorem, a dimension estimate for the stacky Hilbert-Chow morphism, and a splitting theorem for the morphism from the moduli stack to the good GIT quotient.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.1539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.1539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

证明了在一个环型del Pezzo曲面上的充足曲线类上支承的一维半稳定木条的模空间的交上同性(以及反常滤波和Hodge滤波)与木条的欧拉特性无关。对于半稳定希格斯束的模空间,我们也证明了阶数为g-2的有效因子D的类似结果。我们的结果证实了Bousseau关于$\mathbb{P}^2$的上同调$\chi$无关猜想,并验证了Toda关于某些局部曲线和局部曲面的Gopakumar-Vafa不变量的猜想。为了证明,我们结合了Ngo支持定理的一个广义版本,堆栈Hilbert-Chow态射的一个维数估计,以及从模堆栈到好的GIT商的态射的一个分裂定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomological χ–independence for moduli of one-dimensional sheaves and moduli of Higgs bundles
We prove that the intersection cohomology (together with the perverse and the Hodge filtrations) for the moduli space of one-dimensional semistable sheaves supported in an ample curve class on a toric del Pezzo surface is independent of the Euler characteristic of the sheaves. We also prove an analogous result for the moduli space of semistable Higgs bundles with respect to an effective divisor $D$ of degree $\mathrm{deg}(D)>2g-2$. Our results confirm the cohomological $\chi$-independence conjecture by Bousseau for $\mathbb{P}^2$, and verify Toda's conjecture for Gopakumar-Vafa invariants for certain local curves and local surfaces. For the proof, we combine a generalized version of Ngo's support theorem, a dimension estimate for the stacky Hilbert-Chow morphism, and a splitting theorem for the morphism from the moduli stack to the good GIT quotient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信