文本聚类算法研究

Qun Li, Xin-yuan Huang
{"title":"文本聚类算法研究","authors":"Qun Li, Xin-yuan Huang","doi":"10.1109/DBTA.2010.5659055","DOIUrl":null,"url":null,"abstract":"Web documents are enormous. Text clustering is to place the documents with the most words in common into the same cluster. Thus the web search engine can structure the large result set for a certain quest. In this article, we study three kinds of clustering algorithms, prototype based, density based and hierarchical clustering algorithms. We compare two typical algorithms, K-medoids and DBSCAN. The results show that the K-medoids is sensitive to the initial center point and the DBSCAN has a better performance.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Research on Text Clustering Algorithms\",\"authors\":\"Qun Li, Xin-yuan Huang\",\"doi\":\"10.1109/DBTA.2010.5659055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web documents are enormous. Text clustering is to place the documents with the most words in common into the same cluster. Thus the web search engine can structure the large result set for a certain quest. In this article, we study three kinds of clustering algorithms, prototype based, density based and hierarchical clustering algorithms. We compare two typical algorithms, K-medoids and DBSCAN. The results show that the K-medoids is sensitive to the initial center point and the DBSCAN has a better performance.\",\"PeriodicalId\":320509,\"journal\":{\"name\":\"2010 2nd International Workshop on Database Technology and Applications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Database Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DBTA.2010.5659055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5659055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

网络文档非常庞大。文本聚类是将具有最多共同单词的文档放在同一个聚类中。因此,网络搜索引擎可以为特定的任务构建大的结果集。本文研究了三种聚类算法:基于原型的聚类算法、基于密度的聚类算法和分层聚类算法。我们比较了两种典型的算法,k - medioids和DBSCAN。结果表明,k -介质对初始中心点敏感,DBSCAN具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Text Clustering Algorithms
Web documents are enormous. Text clustering is to place the documents with the most words in common into the same cluster. Thus the web search engine can structure the large result set for a certain quest. In this article, we study three kinds of clustering algorithms, prototype based, density based and hierarchical clustering algorithms. We compare two typical algorithms, K-medoids and DBSCAN. The results show that the K-medoids is sensitive to the initial center point and the DBSCAN has a better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信