使用图嵌入的自动大脑状态识别

Hongyuan You, Adam Liska, Nathan Russell, Payel Das
{"title":"使用图嵌入的自动大脑状态识别","authors":"Hongyuan You, Adam Liska, Nathan Russell, Payel Das","doi":"10.1109/PRNI.2017.7981508","DOIUrl":null,"url":null,"abstract":"The functional activation pattern within the human brain is known to change at varying time-scales. This existence of and dynamics between inherently different brain functional states are found to be related to human learning, behavior, and development, and, are therefore of high importance. Yet, tools to automatically identify such cognitive states are limited. In this study, we consider high-dimensional functional connectome data constructed from BOLD fMRI over short time-intervals as a graph, each time-point as a node, and the similarity between two time-points as the edge between those two nodes. We apply graph embedding techniques to automatically extract clusters of time-points, which represent canonical brain states. Application of graph embedding technique to BOLD fMRI time-series of a population comprised of autistic and neurotypical subjects demonstrates that two-layer embedding by preserving the higherorder similarity between different time-points is crucial toward successful identification of low-dimensional brain functional states. Finally, the present study reveals inherent existence of two brain meta-states within human brain.","PeriodicalId":429199,"journal":{"name":"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated brain state identification using graph embedding\",\"authors\":\"Hongyuan You, Adam Liska, Nathan Russell, Payel Das\",\"doi\":\"10.1109/PRNI.2017.7981508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The functional activation pattern within the human brain is known to change at varying time-scales. This existence of and dynamics between inherently different brain functional states are found to be related to human learning, behavior, and development, and, are therefore of high importance. Yet, tools to automatically identify such cognitive states are limited. In this study, we consider high-dimensional functional connectome data constructed from BOLD fMRI over short time-intervals as a graph, each time-point as a node, and the similarity between two time-points as the edge between those two nodes. We apply graph embedding techniques to automatically extract clusters of time-points, which represent canonical brain states. Application of graph embedding technique to BOLD fMRI time-series of a population comprised of autistic and neurotypical subjects demonstrates that two-layer embedding by preserving the higherorder similarity between different time-points is crucial toward successful identification of low-dimensional brain functional states. Finally, the present study reveals inherent existence of two brain meta-states within human brain.\",\"PeriodicalId\":429199,\"journal\":{\"name\":\"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2017.7981508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2017.7981508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,人类大脑的功能激活模式会在不同的时间尺度上发生变化。这种内在不同的大脑功能状态之间的存在和动态被发现与人类的学习、行为和发展有关,因此具有很高的重要性。然而,自动识别这种认知状态的工具是有限的。在本研究中,我们将BOLD fMRI在短时间间隔内构建的高维功能连接体数据作为一个图,每个时间点作为一个节点,两个时间点之间的相似性作为这两个节点之间的边。我们应用图嵌入技术来自动提取时间点簇,这些时间点代表典型的大脑状态。图嵌入技术对孤独症和神经正常人群的BOLD fMRI时间序列的应用表明,通过保持不同时间点之间的高阶相似性的双层嵌入对于成功识别低维脑功能状态至关重要。最后,本研究揭示了人脑内在存在两种脑元状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated brain state identification using graph embedding
The functional activation pattern within the human brain is known to change at varying time-scales. This existence of and dynamics between inherently different brain functional states are found to be related to human learning, behavior, and development, and, are therefore of high importance. Yet, tools to automatically identify such cognitive states are limited. In this study, we consider high-dimensional functional connectome data constructed from BOLD fMRI over short time-intervals as a graph, each time-point as a node, and the similarity between two time-points as the edge between those two nodes. We apply graph embedding techniques to automatically extract clusters of time-points, which represent canonical brain states. Application of graph embedding technique to BOLD fMRI time-series of a population comprised of autistic and neurotypical subjects demonstrates that two-layer embedding by preserving the higherorder similarity between different time-points is crucial toward successful identification of low-dimensional brain functional states. Finally, the present study reveals inherent existence of two brain meta-states within human brain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信