Hongyuan You, Adam Liska, Nathan Russell, Payel Das
{"title":"使用图嵌入的自动大脑状态识别","authors":"Hongyuan You, Adam Liska, Nathan Russell, Payel Das","doi":"10.1109/PRNI.2017.7981508","DOIUrl":null,"url":null,"abstract":"The functional activation pattern within the human brain is known to change at varying time-scales. This existence of and dynamics between inherently different brain functional states are found to be related to human learning, behavior, and development, and, are therefore of high importance. Yet, tools to automatically identify such cognitive states are limited. In this study, we consider high-dimensional functional connectome data constructed from BOLD fMRI over short time-intervals as a graph, each time-point as a node, and the similarity between two time-points as the edge between those two nodes. We apply graph embedding techniques to automatically extract clusters of time-points, which represent canonical brain states. Application of graph embedding technique to BOLD fMRI time-series of a population comprised of autistic and neurotypical subjects demonstrates that two-layer embedding by preserving the higherorder similarity between different time-points is crucial toward successful identification of low-dimensional brain functional states. Finally, the present study reveals inherent existence of two brain meta-states within human brain.","PeriodicalId":429199,"journal":{"name":"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated brain state identification using graph embedding\",\"authors\":\"Hongyuan You, Adam Liska, Nathan Russell, Payel Das\",\"doi\":\"10.1109/PRNI.2017.7981508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The functional activation pattern within the human brain is known to change at varying time-scales. This existence of and dynamics between inherently different brain functional states are found to be related to human learning, behavior, and development, and, are therefore of high importance. Yet, tools to automatically identify such cognitive states are limited. In this study, we consider high-dimensional functional connectome data constructed from BOLD fMRI over short time-intervals as a graph, each time-point as a node, and the similarity between two time-points as the edge between those two nodes. We apply graph embedding techniques to automatically extract clusters of time-points, which represent canonical brain states. Application of graph embedding technique to BOLD fMRI time-series of a population comprised of autistic and neurotypical subjects demonstrates that two-layer embedding by preserving the higherorder similarity between different time-points is crucial toward successful identification of low-dimensional brain functional states. Finally, the present study reveals inherent existence of two brain meta-states within human brain.\",\"PeriodicalId\":429199,\"journal\":{\"name\":\"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2017.7981508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2017.7981508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated brain state identification using graph embedding
The functional activation pattern within the human brain is known to change at varying time-scales. This existence of and dynamics between inherently different brain functional states are found to be related to human learning, behavior, and development, and, are therefore of high importance. Yet, tools to automatically identify such cognitive states are limited. In this study, we consider high-dimensional functional connectome data constructed from BOLD fMRI over short time-intervals as a graph, each time-point as a node, and the similarity between two time-points as the edge between those two nodes. We apply graph embedding techniques to automatically extract clusters of time-points, which represent canonical brain states. Application of graph embedding technique to BOLD fMRI time-series of a population comprised of autistic and neurotypical subjects demonstrates that two-layer embedding by preserving the higherorder similarity between different time-points is crucial toward successful identification of low-dimensional brain functional states. Finally, the present study reveals inherent existence of two brain meta-states within human brain.