基于分布式分层图神经元的分类器:一种高效、低计算的分类器

R. Mahmood, A. Amin, Asad I. Khan
{"title":"基于分布式分层图神经元的分类器:一种高效、低计算的分类器","authors":"R. Mahmood, A. Amin, Asad I. Khan","doi":"10.1109/ICINIS.2008.161","DOIUrl":null,"url":null,"abstract":"Many of the widely used classifiers are time consuming and resource intensive, and hence not practical to be used in the emerging wireless networks. We present an efficient classifier, termed distributed hierarchical graph neuron (DHGN)-based classifier. Our proposed solution uses a new form of neural network, which consists of a hierarchical graph-based representation of input patterns, and adopts a one-cycle learning process. We compare the effectiveness and computational complexity of our proposed classifier with the well known self-organizing map (SOM) classifier in a supervised environment. The results show that the DHGN-based classifier offers lower computational complexity than SOM while guaranteeing satisfactory classification accuracy.","PeriodicalId":185739,"journal":{"name":"2008 First International Conference on Intelligent Networks and Intelligent Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Distributed Hierarchical Graph Neuron-Based Classifier: An Efficient, Low-Computational Classifier\",\"authors\":\"R. Mahmood, A. Amin, Asad I. Khan\",\"doi\":\"10.1109/ICINIS.2008.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many of the widely used classifiers are time consuming and resource intensive, and hence not practical to be used in the emerging wireless networks. We present an efficient classifier, termed distributed hierarchical graph neuron (DHGN)-based classifier. Our proposed solution uses a new form of neural network, which consists of a hierarchical graph-based representation of input patterns, and adopts a one-cycle learning process. We compare the effectiveness and computational complexity of our proposed classifier with the well known self-organizing map (SOM) classifier in a supervised environment. The results show that the DHGN-based classifier offers lower computational complexity than SOM while guaranteeing satisfactory classification accuracy.\",\"PeriodicalId\":185739,\"journal\":{\"name\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINIS.2008.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Intelligent Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINIS.2008.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多广泛使用的分类器耗时且资源密集,因此不适合在新兴的无线网络中使用。我们提出了一种高效的分类器,称为分布式层次图神经元(DHGN)分类器。我们提出的解决方案使用了一种新的神经网络形式,它由输入模式的分层图表示组成,并采用单周期学习过程。我们比较了我们提出的分类器在监督环境中的有效性和计算复杂度与著名的自组织映射(SOM)分类器。结果表明,基于dhgn的分类器在保证分类精度的同时,计算复杂度低于SOM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distributed Hierarchical Graph Neuron-Based Classifier: An Efficient, Low-Computational Classifier
Many of the widely used classifiers are time consuming and resource intensive, and hence not practical to be used in the emerging wireless networks. We present an efficient classifier, termed distributed hierarchical graph neuron (DHGN)-based classifier. Our proposed solution uses a new form of neural network, which consists of a hierarchical graph-based representation of input patterns, and adopts a one-cycle learning process. We compare the effectiveness and computational complexity of our proposed classifier with the well known self-organizing map (SOM) classifier in a supervised environment. The results show that the DHGN-based classifier offers lower computational complexity than SOM while guaranteeing satisfactory classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信