{"title":"学习双足行走的推力恢复策略","authors":"D. C. Melo, M. Maximo, Adilson Marques da Cunha","doi":"10.5753/wtdr_ctdr.2021.18686","DOIUrl":null,"url":null,"abstract":"The present work provides an implementation of a Push Recovery controller that aids the walking engine used by a humanoid simulated robot. The simulation environment is the Robocup Soccer 3D Simulation League. The learned movement policies exceeded our original walking engine. In addition, we evaluated the policies and detected undesired biases. New methodologies were introduced in order to eliminate it.","PeriodicalId":334960,"journal":{"name":"Anais Estendidos do XIII Simpósio Brasileiro de Robótica e XVIII Simpósio Latino Americano de Robótica (SBR/LARS Estendido 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Push Recovery Strategies for Bipedal Walking\",\"authors\":\"D. C. Melo, M. Maximo, Adilson Marques da Cunha\",\"doi\":\"10.5753/wtdr_ctdr.2021.18686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work provides an implementation of a Push Recovery controller that aids the walking engine used by a humanoid simulated robot. The simulation environment is the Robocup Soccer 3D Simulation League. The learned movement policies exceeded our original walking engine. In addition, we evaluated the policies and detected undesired biases. New methodologies were introduced in order to eliminate it.\",\"PeriodicalId\":334960,\"journal\":{\"name\":\"Anais Estendidos do XIII Simpósio Brasileiro de Robótica e XVIII Simpósio Latino Americano de Robótica (SBR/LARS Estendido 2021)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XIII Simpósio Brasileiro de Robótica e XVIII Simpósio Latino Americano de Robótica (SBR/LARS Estendido 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wtdr_ctdr.2021.18686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XIII Simpósio Brasileiro de Robótica e XVIII Simpósio Latino Americano de Robótica (SBR/LARS Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wtdr_ctdr.2021.18686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Push Recovery Strategies for Bipedal Walking
The present work provides an implementation of a Push Recovery controller that aids the walking engine used by a humanoid simulated robot. The simulation environment is the Robocup Soccer 3D Simulation League. The learned movement policies exceeded our original walking engine. In addition, we evaluated the policies and detected undesired biases. New methodologies were introduced in order to eliminate it.