基于多层感知器网络的矩形贴片天线谐振频率预测

Adil Bouhous
{"title":"基于多层感知器网络的矩形贴片天线谐振频率预测","authors":"Adil Bouhous","doi":"10.1109/ISIA55826.2022.9993501","DOIUrl":null,"url":null,"abstract":"In this paper, a novel approach to accurately calculate the resonant frequencies of rectangular microstrip antennas using artificial neural networks (ANN) and the method of moments (MOM) is proposed. The ANN is developed to calculate the real part and the imaginary part of the complex resonant frequency of the antenna. The ANN is designed using multilayer perceptron network (MLP). Results concerning this resonance frequency as a function of the different physical and geometrical parameters of the antenna are presented. These obtained results correspond to the trained and tested data of the ANN model. A comparison with other results calculated from Chew's algorithm clearly shows the effectiveness of the proposed approach. The objective is to reduce the computational complexities, and thus to considerably reduce the computation time.","PeriodicalId":169898,"journal":{"name":"2022 5th International Symposium on Informatics and its Applications (ISIA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of resonance frequencies of rectangular patch antenna using a multilayer perceptron network\",\"authors\":\"Adil Bouhous\",\"doi\":\"10.1109/ISIA55826.2022.9993501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel approach to accurately calculate the resonant frequencies of rectangular microstrip antennas using artificial neural networks (ANN) and the method of moments (MOM) is proposed. The ANN is developed to calculate the real part and the imaginary part of the complex resonant frequency of the antenna. The ANN is designed using multilayer perceptron network (MLP). Results concerning this resonance frequency as a function of the different physical and geometrical parameters of the antenna are presented. These obtained results correspond to the trained and tested data of the ANN model. A comparison with other results calculated from Chew's algorithm clearly shows the effectiveness of the proposed approach. The objective is to reduce the computational complexities, and thus to considerably reduce the computation time.\",\"PeriodicalId\":169898,\"journal\":{\"name\":\"2022 5th International Symposium on Informatics and its Applications (ISIA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Symposium on Informatics and its Applications (ISIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIA55826.2022.9993501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Symposium on Informatics and its Applications (ISIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIA55826.2022.9993501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用人工神经网络和矩量法精确计算矩形微带天线谐振频率的新方法。利用人工神经网络计算天线复谐振频率的实部和虚部。该人工神经网络采用多层感知器网络(MLP)进行设计。给出了谐振频率随天线物理和几何参数变化的结果。所得结果与人工神经网络模型的训练和测试数据相对应。通过与Chew算法计算结果的比较,可以清楚地看出该方法的有效性。目标是降低计算复杂性,从而大大减少计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of resonance frequencies of rectangular patch antenna using a multilayer perceptron network
In this paper, a novel approach to accurately calculate the resonant frequencies of rectangular microstrip antennas using artificial neural networks (ANN) and the method of moments (MOM) is proposed. The ANN is developed to calculate the real part and the imaginary part of the complex resonant frequency of the antenna. The ANN is designed using multilayer perceptron network (MLP). Results concerning this resonance frequency as a function of the different physical and geometrical parameters of the antenna are presented. These obtained results correspond to the trained and tested data of the ANN model. A comparison with other results calculated from Chew's algorithm clearly shows the effectiveness of the proposed approach. The objective is to reduce the computational complexities, and thus to considerably reduce the computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信