Xiaoshi Yin, Zhoujun Li, Xiangji Huang, Xiaohua Hu
{"title":"基因组学搜索结果多样化的关联-新颖性组合模型","authors":"Xiaoshi Yin, Zhoujun Li, Xiangji Huang, Xiaohua Hu","doi":"10.1109/BIBM.2010.5706654","DOIUrl":null,"url":null,"abstract":"Traditional retrieval models assume that the relevance of a document is independent of the relevance of other documents. However, this assumption may result in high redundancy and low diversity in a ranked list. In order to provide comprehensive and diverse answers to fulfill biologists' information need, we propose a relevance-novelty combined model, named RelNov model, based on the framework of an undirected graphical model. Experiments conducted on the TREC 2006 and 2007 Genomics collections show that the proposed approach is effective in promoting both diversity and relevance of retrieval ranked lists.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A relevance-novelty combined model for genomics search result diversification\",\"authors\":\"Xiaoshi Yin, Zhoujun Li, Xiangji Huang, Xiaohua Hu\",\"doi\":\"10.1109/BIBM.2010.5706654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional retrieval models assume that the relevance of a document is independent of the relevance of other documents. However, this assumption may result in high redundancy and low diversity in a ranked list. In order to provide comprehensive and diverse answers to fulfill biologists' information need, we propose a relevance-novelty combined model, named RelNov model, based on the framework of an undirected graphical model. Experiments conducted on the TREC 2006 and 2007 Genomics collections show that the proposed approach is effective in promoting both diversity and relevance of retrieval ranked lists.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A relevance-novelty combined model for genomics search result diversification
Traditional retrieval models assume that the relevance of a document is independent of the relevance of other documents. However, this assumption may result in high redundancy and low diversity in a ranked list. In order to provide comprehensive and diverse answers to fulfill biologists' information need, we propose a relevance-novelty combined model, named RelNov model, based on the framework of an undirected graphical model. Experiments conducted on the TREC 2006 and 2007 Genomics collections show that the proposed approach is effective in promoting both diversity and relevance of retrieval ranked lists.