Yanzhang He, Rohit Prabhavalkar, Kanishka Rao, Wei Li, A. Bakhtin, Ian McGraw
{"title":"流式传输使用序列到序列模型的小占用关键字定位","authors":"Yanzhang He, Rohit Prabhavalkar, Kanishka Rao, Wei Li, A. Bakhtin, Ian McGraw","doi":"10.1109/ASRU.2017.8268974","DOIUrl":null,"url":null,"abstract":"We develop streaming keyword spotting systems using a recurrent neural network transducer (RNN-T) model: an all-neural, end-to-end trained, sequence-to-sequence model which jointly learns acoustic and language model components. Our models are trained to predict either phonemes or graphemes as subword units, thus allowing us to detect arbitrary keyword phrases, without any out-of-vocabulary words. In order to adapt the models to the requirements of keyword spotting, we propose a novel technique which biases the RNN-T system towards a specific keyword of interest. Our systems are compared against a strong sequence-trained, connectionist temporal classification (CTC) based “keyword-filler” baseline, which is augmented with a separate phoneme language model. Overall, our RNN-T system with the proposed biasing technique significantly improves performance over the baseline system.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Streaming small-footprint keyword spotting using sequence-to-sequence models\",\"authors\":\"Yanzhang He, Rohit Prabhavalkar, Kanishka Rao, Wei Li, A. Bakhtin, Ian McGraw\",\"doi\":\"10.1109/ASRU.2017.8268974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop streaming keyword spotting systems using a recurrent neural network transducer (RNN-T) model: an all-neural, end-to-end trained, sequence-to-sequence model which jointly learns acoustic and language model components. Our models are trained to predict either phonemes or graphemes as subword units, thus allowing us to detect arbitrary keyword phrases, without any out-of-vocabulary words. In order to adapt the models to the requirements of keyword spotting, we propose a novel technique which biases the RNN-T system towards a specific keyword of interest. Our systems are compared against a strong sequence-trained, connectionist temporal classification (CTC) based “keyword-filler” baseline, which is augmented with a separate phoneme language model. Overall, our RNN-T system with the proposed biasing technique significantly improves performance over the baseline system.\",\"PeriodicalId\":290868,\"journal\":{\"name\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2017.8268974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Streaming small-footprint keyword spotting using sequence-to-sequence models
We develop streaming keyword spotting systems using a recurrent neural network transducer (RNN-T) model: an all-neural, end-to-end trained, sequence-to-sequence model which jointly learns acoustic and language model components. Our models are trained to predict either phonemes or graphemes as subword units, thus allowing us to detect arbitrary keyword phrases, without any out-of-vocabulary words. In order to adapt the models to the requirements of keyword spotting, we propose a novel technique which biases the RNN-T system towards a specific keyword of interest. Our systems are compared against a strong sequence-trained, connectionist temporal classification (CTC) based “keyword-filler” baseline, which is augmented with a separate phoneme language model. Overall, our RNN-T system with the proposed biasing technique significantly improves performance over the baseline system.