交互式基于内容的纹理图像检索

Pushpa B. Patil, M. Kokare
{"title":"交互式基于内容的纹理图像检索","authors":"Pushpa B. Patil, M. Kokare","doi":"10.1109/ICCCT.2011.6075199","DOIUrl":null,"url":null,"abstract":"Due to the semantic gap between low-level image features and high level concepts, content-Based image retrieval (CBIR) systems are incapable to provide the effective results to the user. To address this problem, we have presented a framework for effective image retrieval by proposing a novel idea of cumulative learning using Support Vector Machines (SVM). It creates a knowledge base model to increase the training samples by simply accumulating the samples based on user interactions. As we know relevance feedback (RF) is online process, so we have optimized the learning process by considering the most positive image selection on each feedback iteration. To learn the system we have used SVM. The main significances of our system are to address the small training sample and to reduce retrieval time. Experiments are conducted on 1856 texture images to demonstrate the effectiveness of the proposed framework","PeriodicalId":285986,"journal":{"name":"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Interactive content-based texture image retrieval\",\"authors\":\"Pushpa B. Patil, M. Kokare\",\"doi\":\"10.1109/ICCCT.2011.6075199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the semantic gap between low-level image features and high level concepts, content-Based image retrieval (CBIR) systems are incapable to provide the effective results to the user. To address this problem, we have presented a framework for effective image retrieval by proposing a novel idea of cumulative learning using Support Vector Machines (SVM). It creates a knowledge base model to increase the training samples by simply accumulating the samples based on user interactions. As we know relevance feedback (RF) is online process, so we have optimized the learning process by considering the most positive image selection on each feedback iteration. To learn the system we have used SVM. The main significances of our system are to address the small training sample and to reduce retrieval time. Experiments are conducted on 1856 texture images to demonstrate the effectiveness of the proposed framework\",\"PeriodicalId\":285986,\"journal\":{\"name\":\"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT.2011.6075199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT.2011.6075199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于内容的图像检索(CBIR)系统由于底层图像特征与高层图像概念之间存在语义差距,无法为用户提供有效的检索结果。为了解决这个问题,我们提出了一个使用支持向量机(SVM)进行累积学习的新思路,提出了一个有效的图像检索框架。它创建了一个知识库模型,通过简单地基于用户交互积累样本来增加训练样本。我们知道相关反馈(RF)是在线过程,因此我们通过在每次反馈迭代中考虑最积极的图像选择来优化学习过程。为了学习这个系统,我们使用了支持向量机。该系统的主要意义在于解决了训练样本小的问题,减少了检索时间。在1856幅纹理图像上进行了实验,验证了该框架的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive content-based texture image retrieval
Due to the semantic gap between low-level image features and high level concepts, content-Based image retrieval (CBIR) systems are incapable to provide the effective results to the user. To address this problem, we have presented a framework for effective image retrieval by proposing a novel idea of cumulative learning using Support Vector Machines (SVM). It creates a knowledge base model to increase the training samples by simply accumulating the samples based on user interactions. As we know relevance feedback (RF) is online process, so we have optimized the learning process by considering the most positive image selection on each feedback iteration. To learn the system we have used SVM. The main significances of our system are to address the small training sample and to reduce retrieval time. Experiments are conducted on 1856 texture images to demonstrate the effectiveness of the proposed framework
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信