基于云的鲁棒进化控制器(RECCo)

G. Andonovski, P. Angelov, S. Blažič, I. Škrjanc
{"title":"基于云的鲁棒进化控制器(RECCo)","authors":"G. Andonovski, P. Angelov, S. Blažič, I. Škrjanc","doi":"10.1109/EAIS.2017.7954835","DOIUrl":null,"url":null,"abstract":"This paper presents an autonomous Robust Evolving Cloud-based Controller (RECCo). The control algorithm is a fuzzy type with non-parametric (cloud-based) antecedent part and adaptive PID-R consequent part. The procedure starts with zero clouds (fuzzy rules) and the structure evolves during performing the process control. The PID-R parameters of the first cloud are initialized with zeros and furthermore, they are adapted on-line with a stable adaptation mechanism based on Lyapunov approach. The RECCo controller does not require any mathematical model of the controlled process but just basic information such as input and output range and the estimated value of the dominant time constant. Due to the problem space normalization the design parameters are fixed. The proposed controller with the same initial design parameters was tested on two different simulation examples. The experimental results show the convergence of the adaptive parameters and the effectiveness of the proposed algorithm.","PeriodicalId":286312,"journal":{"name":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust Evolving Cloud-based Controller (RECCo)\",\"authors\":\"G. Andonovski, P. Angelov, S. Blažič, I. Škrjanc\",\"doi\":\"10.1109/EAIS.2017.7954835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an autonomous Robust Evolving Cloud-based Controller (RECCo). The control algorithm is a fuzzy type with non-parametric (cloud-based) antecedent part and adaptive PID-R consequent part. The procedure starts with zero clouds (fuzzy rules) and the structure evolves during performing the process control. The PID-R parameters of the first cloud are initialized with zeros and furthermore, they are adapted on-line with a stable adaptation mechanism based on Lyapunov approach. The RECCo controller does not require any mathematical model of the controlled process but just basic information such as input and output range and the estimated value of the dominant time constant. Due to the problem space normalization the design parameters are fixed. The proposed controller with the same initial design parameters was tested on two different simulation examples. The experimental results show the convergence of the adaptive parameters and the effectiveness of the proposed algorithm.\",\"PeriodicalId\":286312,\"journal\":{\"name\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2017.7954835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2017.7954835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于云的自主鲁棒进化控制器(RECCo)。该控制算法是一种非参数(基于云)的模糊控制算法,其前置部分为自适应PID-R后继部分。该过程从零云(模糊规则)开始,在执行过程控制期间结构演变。将第一个云的PID-R参数初始化为零,并采用基于Lyapunov方法的稳定自适应机制对其进行在线自适应。RECCo控制器不需要控制过程的任何数学模型,而只需要输入和输出范围以及主导时间常数的估计值等基本信息。由于问题空间归一化,设计参数是固定的。在两个不同的仿真实例上对具有相同初始设计参数的控制器进行了测试。实验结果表明了自适应参数的收敛性和算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Evolving Cloud-based Controller (RECCo)
This paper presents an autonomous Robust Evolving Cloud-based Controller (RECCo). The control algorithm is a fuzzy type with non-parametric (cloud-based) antecedent part and adaptive PID-R consequent part. The procedure starts with zero clouds (fuzzy rules) and the structure evolves during performing the process control. The PID-R parameters of the first cloud are initialized with zeros and furthermore, they are adapted on-line with a stable adaptation mechanism based on Lyapunov approach. The RECCo controller does not require any mathematical model of the controlled process but just basic information such as input and output range and the estimated value of the dominant time constant. Due to the problem space normalization the design parameters are fixed. The proposed controller with the same initial design parameters was tested on two different simulation examples. The experimental results show the convergence of the adaptive parameters and the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信