识别集群间的关联规则

M. Pagani, Gloria Bordogna
{"title":"识别集群间的关联规则","authors":"M. Pagani, Gloria Bordogna","doi":"10.1145/1456223.1456307","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel procedure, based on (fuzzy) clustering comparison techniques, to identify association rules between clusters.\n The procedure we propose is largely based on the use of clustering comparison techniques that we generalized to the fuzzy context. The described methodology can be useful for exploratory data analysis; its complexity is linear to the number of the entities in the data set.","PeriodicalId":309453,"journal":{"name":"International Conference on Soft Computing as Transdisciplinary Science and Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of association rules between clusters\",\"authors\":\"M. Pagani, Gloria Bordogna\",\"doi\":\"10.1145/1456223.1456307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a novel procedure, based on (fuzzy) clustering comparison techniques, to identify association rules between clusters.\\n The procedure we propose is largely based on the use of clustering comparison techniques that we generalized to the fuzzy context. The described methodology can be useful for exploratory data analysis; its complexity is linear to the number of the entities in the data set.\",\"PeriodicalId\":309453,\"journal\":{\"name\":\"International Conference on Soft Computing as Transdisciplinary Science and Technology\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Soft Computing as Transdisciplinary Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1456223.1456307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Soft Computing as Transdisciplinary Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1456223.1456307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的基于(模糊)聚类比较技术的聚类间关联规则识别方法。我们提出的过程在很大程度上是基于我们推广到模糊上下文的聚类比较技术的使用。所描述的方法可用于探索性数据分析;它的复杂度与数据集中实体的数量成线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of association rules between clusters
In this paper we introduce a novel procedure, based on (fuzzy) clustering comparison techniques, to identify association rules between clusters. The procedure we propose is largely based on the use of clustering comparison techniques that we generalized to the fuzzy context. The described methodology can be useful for exploratory data analysis; its complexity is linear to the number of the entities in the data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信