一种精确的非结构有限体积离散玻尔兹曼方法

Leitao Chen, L. Schaefer, Xiaofeng Cai
{"title":"一种精确的非结构有限体积离散玻尔兹曼方法","authors":"Leitao Chen, L. Schaefer, Xiaofeng Cai","doi":"10.1115/IMECE2018-87136","DOIUrl":null,"url":null,"abstract":"Unlike the conventional lattice Boltzmann method (LBM), the discrete Boltzmann method (DBM) is Eulerian in nature and decouples the discretization of particle velocity space from configuration space and time space, which allows the use of an unstructured grid to exactly capture complex boundary geometries. A discrete Boltzmann model that solves the discrete Boltzmann equation (DBE) with the finite volume method (FVM) on a triangular unstructured grid is developed. The accuracy of the model is improved with the proposed high-order flux schemes and interpolation scheme. The boundary treatment for commonly used boundary conditions is also formulated. A series of problems with both periodic and non-periodic boundaries are simulated. The results show that the new model can significantly reduce numerical viscosity.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Accurate Unstructured Finite Volume Discrete Boltzmann Method\",\"authors\":\"Leitao Chen, L. Schaefer, Xiaofeng Cai\",\"doi\":\"10.1115/IMECE2018-87136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike the conventional lattice Boltzmann method (LBM), the discrete Boltzmann method (DBM) is Eulerian in nature and decouples the discretization of particle velocity space from configuration space and time space, which allows the use of an unstructured grid to exactly capture complex boundary geometries. A discrete Boltzmann model that solves the discrete Boltzmann equation (DBE) with the finite volume method (FVM) on a triangular unstructured grid is developed. The accuracy of the model is improved with the proposed high-order flux schemes and interpolation scheme. The boundary treatment for commonly used boundary conditions is also formulated. A series of problems with both periodic and non-periodic boundaries are simulated. The results show that the new model can significantly reduce numerical viscosity.\",\"PeriodicalId\":229616,\"journal\":{\"name\":\"Volume 7: Fluids Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与传统的晶格玻尔兹曼方法(LBM)不同,离散玻尔兹曼方法(DBM)本质上是欧拉的,它将粒子速度空间的离散化与构型空间和时间空间解耦,从而允许使用非结构化网格来精确捕获复杂的边界几何形状。建立了在三角形非结构网格上用有限体积法求解离散玻尔兹曼方程(DBE)的离散玻尔兹曼模型。提出的高阶通量格式和插值格式提高了模型的精度。给出了常用边界条件的边界处理方法。模拟了一系列具有周期边界和非周期边界的问题。结果表明,新模型能显著降低数值黏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Accurate Unstructured Finite Volume Discrete Boltzmann Method
Unlike the conventional lattice Boltzmann method (LBM), the discrete Boltzmann method (DBM) is Eulerian in nature and decouples the discretization of particle velocity space from configuration space and time space, which allows the use of an unstructured grid to exactly capture complex boundary geometries. A discrete Boltzmann model that solves the discrete Boltzmann equation (DBE) with the finite volume method (FVM) on a triangular unstructured grid is developed. The accuracy of the model is improved with the proposed high-order flux schemes and interpolation scheme. The boundary treatment for commonly used boundary conditions is also formulated. A series of problems with both periodic and non-periodic boundaries are simulated. The results show that the new model can significantly reduce numerical viscosity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信