音乐市场成功的预测模型

Carlos Vicente Soares Araújo, Rafael Giusti, Marco Cristo
{"title":"音乐市场成功的预测模型","authors":"Carlos Vicente Soares Araújo, Rafael Giusti, Marco Cristo","doi":"10.5753/webmedia.2018.4559","DOIUrl":null,"url":null,"abstract":"In this paper we present an ongoing research that aims to produce a model to predict success in the musical market. To reach this goal, it is necessary, initially, to identify infl uence factors in the market, which is the current focus of this research. In this branch, we identify that tweets have infl uence over the popularity of an album in Spotify. We also found out that Pop has more tendency to have the most popular song of a year, among other analyses. The next steps of this research are to list even more infl uence factors, generate the model using artifi cial neural networks and validate it with real-world cases.","PeriodicalId":314723,"journal":{"name":"Anais Estendidos do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Um Modelo de Predição para o Sucesso no Mercado Musical\",\"authors\":\"Carlos Vicente Soares Araújo, Rafael Giusti, Marco Cristo\",\"doi\":\"10.5753/webmedia.2018.4559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an ongoing research that aims to produce a model to predict success in the musical market. To reach this goal, it is necessary, initially, to identify infl uence factors in the market, which is the current focus of this research. In this branch, we identify that tweets have infl uence over the popularity of an album in Spotify. We also found out that Pop has more tendency to have the most popular song of a year, among other analyses. The next steps of this research are to list even more infl uence factors, generate the model using artifi cial neural networks and validate it with real-world cases.\",\"PeriodicalId\":314723,\"journal\":{\"name\":\"Anais Estendidos do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/webmedia.2018.4559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/webmedia.2018.4559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一项正在进行的研究,旨在产生一个模型来预测音乐市场的成功。为了达到这一目标,有必要首先确定市场中的影响因素,这是当前研究的重点。在这个分支中,我们发现推文对Spotify中专辑的受欢迎程度有影响。我们还发现,在其他分析中,流行音乐更倾向于拥有年度最受欢迎的歌曲。这项研究的下一步是列出更多的影响因素,使用人工神经网络生成模型,并用现实世界的案例验证它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Um Modelo de Predição para o Sucesso no Mercado Musical
In this paper we present an ongoing research that aims to produce a model to predict success in the musical market. To reach this goal, it is necessary, initially, to identify infl uence factors in the market, which is the current focus of this research. In this branch, we identify that tweets have infl uence over the popularity of an album in Spotify. We also found out that Pop has more tendency to have the most popular song of a year, among other analyses. The next steps of this research are to list even more infl uence factors, generate the model using artifi cial neural networks and validate it with real-world cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信