{"title":"一类非线性系统的神经滑动控制方法","authors":"Hongliu Du, S. Nair","doi":"10.1109/KES.1997.619406","DOIUrl":null,"url":null,"abstract":"This paper proposes a learning method for the compensation of uncertainties, for a class of nonlinear systems. A sliding model control strategy is used for the robust control design after a prior stable learning phase. Gaussian networks are used to identify the uncertainties during this learning phase. Learning and control bounds are guaranteed by properly constructing the training structure. The proposed technique has been validated using a hardware example case of an electromechanical system. Experiments have shown that the inclusion of the proposed learning technique in the robust control design results in improved system performance.","PeriodicalId":166931,"journal":{"name":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A neuro-sliding control approach for a class of nonlinear systems\",\"authors\":\"Hongliu Du, S. Nair\",\"doi\":\"10.1109/KES.1997.619406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a learning method for the compensation of uncertainties, for a class of nonlinear systems. A sliding model control strategy is used for the robust control design after a prior stable learning phase. Gaussian networks are used to identify the uncertainties during this learning phase. Learning and control bounds are guaranteed by properly constructing the training structure. The proposed technique has been validated using a hardware example case of an electromechanical system. Experiments have shown that the inclusion of the proposed learning technique in the robust control design results in improved system performance.\",\"PeriodicalId\":166931,\"journal\":{\"name\":\"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KES.1997.619406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1997.619406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A neuro-sliding control approach for a class of nonlinear systems
This paper proposes a learning method for the compensation of uncertainties, for a class of nonlinear systems. A sliding model control strategy is used for the robust control design after a prior stable learning phase. Gaussian networks are used to identify the uncertainties during this learning phase. Learning and control bounds are guaranteed by properly constructing the training structure. The proposed technique has been validated using a hardware example case of an electromechanical system. Experiments have shown that the inclusion of the proposed learning technique in the robust control design results in improved system performance.