Nesrine Kerkeni, M. Kharrat, F. Maazoul, H. Boudabous, R. M'rad, M. Trabelsi
{"title":"突尼斯Warburg微综合征家族的RAB3GAP1突变","authors":"Nesrine Kerkeni, M. Kharrat, F. Maazoul, H. Boudabous, R. M'rad, M. Trabelsi","doi":"10.3988/jcn.2022.18.e2","DOIUrl":null,"url":null,"abstract":"Background and Purpose Warburg Micro syndrome (WARBM) is a rare autosomal recessive genetic disease characterized by ocular, neurologic, and endocrine anomalies. WARBM is a phenotypically and genetically heterogeneous syndrome caused by mutations in RAB3GAP1, RAB3GAP2, RAB18, and TBC1D20. Here we present the clinical and genetic characterization of a consanguineous Tunisian family with a WARBM phenotype presenting two pathogenic variations, one of which is on RAB3GAP1. Methods We applied whole-exome sequencing (WES) to two affected young males presenting a WARBM-compatible phenotype. Results We reveal a new variation in RAB3GAP1 (NM_012233.3: c.297del, p.Gln99fs) and another variation in ABCD1 (NM_000033: c.896A>G, p.His299Arg). Each of these mutations, which in silico predictions concluded as being pathogenic variations, affects a critical protein region. Both affected males presented a WARBM-compatible phenotype, with severe intellectual disability, severe developmental delay, postnatal growth delay, postnatal microcephaly, congenital bilateral cataracts, general hypotonia, and a thin corpus callosum without a splenium. However, intrafamilial clinical heterogeneity was present, since only the oldest child had large ears, microphthalmia, foot deformities, and a genital anomaly, and only the youngest child had microcornea. Despite the mutation identified in ABCD1, our patients did not have any X-linked symptoms of adrenoleukodystrophy disorder that are usually caused by ABCD1 mutations, which prompted our interest in clinical monitoring. Conclusions WES analysis of a consanguineous Tunisian family with WARBM revealed a novel variation in RAB3GAP1 (NM_012233.3: c.297del, p.Gln99fs) that is most likely pathogenic and allowed us to confirm the diagnosis of WARBM.","PeriodicalId":324902,"journal":{"name":"Journal of Clinical Neurology (Seoul, Korea)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Novel RAB3GAP1 Mutation in the First Tunisian Family With Warburg Micro Syndrome\",\"authors\":\"Nesrine Kerkeni, M. Kharrat, F. Maazoul, H. Boudabous, R. M'rad, M. Trabelsi\",\"doi\":\"10.3988/jcn.2022.18.e2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and Purpose Warburg Micro syndrome (WARBM) is a rare autosomal recessive genetic disease characterized by ocular, neurologic, and endocrine anomalies. WARBM is a phenotypically and genetically heterogeneous syndrome caused by mutations in RAB3GAP1, RAB3GAP2, RAB18, and TBC1D20. Here we present the clinical and genetic characterization of a consanguineous Tunisian family with a WARBM phenotype presenting two pathogenic variations, one of which is on RAB3GAP1. Methods We applied whole-exome sequencing (WES) to two affected young males presenting a WARBM-compatible phenotype. Results We reveal a new variation in RAB3GAP1 (NM_012233.3: c.297del, p.Gln99fs) and another variation in ABCD1 (NM_000033: c.896A>G, p.His299Arg). Each of these mutations, which in silico predictions concluded as being pathogenic variations, affects a critical protein region. Both affected males presented a WARBM-compatible phenotype, with severe intellectual disability, severe developmental delay, postnatal growth delay, postnatal microcephaly, congenital bilateral cataracts, general hypotonia, and a thin corpus callosum without a splenium. However, intrafamilial clinical heterogeneity was present, since only the oldest child had large ears, microphthalmia, foot deformities, and a genital anomaly, and only the youngest child had microcornea. Despite the mutation identified in ABCD1, our patients did not have any X-linked symptoms of adrenoleukodystrophy disorder that are usually caused by ABCD1 mutations, which prompted our interest in clinical monitoring. Conclusions WES analysis of a consanguineous Tunisian family with WARBM revealed a novel variation in RAB3GAP1 (NM_012233.3: c.297del, p.Gln99fs) that is most likely pathogenic and allowed us to confirm the diagnosis of WARBM.\",\"PeriodicalId\":324902,\"journal\":{\"name\":\"Journal of Clinical Neurology (Seoul, Korea)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Neurology (Seoul, Korea)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3988/jcn.2022.18.e2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Neurology (Seoul, Korea)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3988/jcn.2022.18.e2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel RAB3GAP1 Mutation in the First Tunisian Family With Warburg Micro Syndrome
Background and Purpose Warburg Micro syndrome (WARBM) is a rare autosomal recessive genetic disease characterized by ocular, neurologic, and endocrine anomalies. WARBM is a phenotypically and genetically heterogeneous syndrome caused by mutations in RAB3GAP1, RAB3GAP2, RAB18, and TBC1D20. Here we present the clinical and genetic characterization of a consanguineous Tunisian family with a WARBM phenotype presenting two pathogenic variations, one of which is on RAB3GAP1. Methods We applied whole-exome sequencing (WES) to two affected young males presenting a WARBM-compatible phenotype. Results We reveal a new variation in RAB3GAP1 (NM_012233.3: c.297del, p.Gln99fs) and another variation in ABCD1 (NM_000033: c.896A>G, p.His299Arg). Each of these mutations, which in silico predictions concluded as being pathogenic variations, affects a critical protein region. Both affected males presented a WARBM-compatible phenotype, with severe intellectual disability, severe developmental delay, postnatal growth delay, postnatal microcephaly, congenital bilateral cataracts, general hypotonia, and a thin corpus callosum without a splenium. However, intrafamilial clinical heterogeneity was present, since only the oldest child had large ears, microphthalmia, foot deformities, and a genital anomaly, and only the youngest child had microcornea. Despite the mutation identified in ABCD1, our patients did not have any X-linked symptoms of adrenoleukodystrophy disorder that are usually caused by ABCD1 mutations, which prompted our interest in clinical monitoring. Conclusions WES analysis of a consanguineous Tunisian family with WARBM revealed a novel variation in RAB3GAP1 (NM_012233.3: c.297del, p.Gln99fs) that is most likely pathogenic and allowed us to confirm the diagnosis of WARBM.