求解方程X + A*X- 1a = I的新算法

Min Li, Yueting Yang, Qingchun Li
{"title":"求解方程X + A*X- 1a = I的新算法","authors":"Min Li, Yueting Yang, Qingchun Li","doi":"10.1109/CSO.2012.17","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the existence of positive definite solutions for the matrix equation X+A*X-1 A=I. A new inversion free variant of the basic fixed point iteration method for obtaining the maximal positive definite solution is established. Moreover, some necessary conditions and sufficient conditions for the existence of positive definite solutions of the matrix equation are obtained. In the end, one numerical example is given to illustrate the effectiveness of our results.","PeriodicalId":170543,"journal":{"name":"2012 Fifth International Joint Conference on Computational Sciences and Optimization","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Algorithm for Solving the Equation X + A*X-1A = I\",\"authors\":\"Min Li, Yueting Yang, Qingchun Li\",\"doi\":\"10.1109/CSO.2012.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the existence of positive definite solutions for the matrix equation X+A*X-1 A=I. A new inversion free variant of the basic fixed point iteration method for obtaining the maximal positive definite solution is established. Moreover, some necessary conditions and sufficient conditions for the existence of positive definite solutions of the matrix equation are obtained. In the end, one numerical example is given to illustrate the effectiveness of our results.\",\"PeriodicalId\":170543,\"journal\":{\"name\":\"2012 Fifth International Joint Conference on Computational Sciences and Optimization\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Joint Conference on Computational Sciences and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2012.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2012.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了矩阵方程X+A*X-1 A=I正定解的存在性。建立了求最大正定解的基本不动点迭代法的一种新的无反转变体。此外,还得到了矩阵方程正定解存在的充分必要条件。最后,给出了一个数值算例,说明了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Algorithm for Solving the Equation X + A*X-1A = I
In this paper, we investigate the existence of positive definite solutions for the matrix equation X+A*X-1 A=I. A new inversion free variant of the basic fixed point iteration method for obtaining the maximal positive definite solution is established. Moreover, some necessary conditions and sufficient conditions for the existence of positive definite solutions of the matrix equation are obtained. In the end, one numerical example is given to illustrate the effectiveness of our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信