基于流水线分类器GMM-HMM的语音命令系统

M. Fezari, M. S. Boumaza, A. Aldahoud
{"title":"基于流水线分类器GMM-HMM的语音命令系统","authors":"M. Fezari, M. S. Boumaza, A. Aldahoud","doi":"10.1109/ICITES.2012.6216652","DOIUrl":null,"url":null,"abstract":"Details of designing and developing a voice guiding system for a robot arm is presented. The features combination technique is investigated and then a hybrid method for classification is applied. Based on research and experimental results, more features will increase the rate of recognition in automatic speech recognition. Thus combining classical components used in ASR system such as Crossing Zero, energy, Mel frequency cepstral coefficients with wavelet transform (to extract meaningful formants parameters) followed by a pipelining ordered classifiers GMM and HMM has contributed in reducing the error rate considerably. To implement the approach on a real-time application, a PC interface was designed to control the movements of a four degree of freedom robot arm by transmitting the orders via RF circuits. The voice command system for the robot is designed and tests showed an Improvement by combining techniques.","PeriodicalId":137864,"journal":{"name":"2012 International Conference on Information Technology and e-Services","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Voice command system based on pipelining classifiers GMM-HMM\",\"authors\":\"M. Fezari, M. S. Boumaza, A. Aldahoud\",\"doi\":\"10.1109/ICITES.2012.6216652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Details of designing and developing a voice guiding system for a robot arm is presented. The features combination technique is investigated and then a hybrid method for classification is applied. Based on research and experimental results, more features will increase the rate of recognition in automatic speech recognition. Thus combining classical components used in ASR system such as Crossing Zero, energy, Mel frequency cepstral coefficients with wavelet transform (to extract meaningful formants parameters) followed by a pipelining ordered classifiers GMM and HMM has contributed in reducing the error rate considerably. To implement the approach on a real-time application, a PC interface was designed to control the movements of a four degree of freedom robot arm by transmitting the orders via RF circuits. The voice command system for the robot is designed and tests showed an Improvement by combining techniques.\",\"PeriodicalId\":137864,\"journal\":{\"name\":\"2012 International Conference on Information Technology and e-Services\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Technology and e-Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITES.2012.6216652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Technology and e-Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITES.2012.6216652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了机器人手臂语音引导系统的设计与开发。研究了特征组合技术,然后采用混合分类方法进行分类。根据研究和实验结果,在自动语音识别中,特征越多,识别率就越高。因此,将ASR系统中使用的经典分量(如过零、能量、Mel频率倒谱系数)与小波变换(以提取有意义的共振峰参数)相结合,然后采用管道有序分类器GMM和HMM,大大降低了错误率。为了在实时应用中实现该方法,设计了一个PC接口,通过射频电路传输命令来控制四自由度机械臂的运动。设计了机器人的语音指挥系统,并结合技术进行了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voice command system based on pipelining classifiers GMM-HMM
Details of designing and developing a voice guiding system for a robot arm is presented. The features combination technique is investigated and then a hybrid method for classification is applied. Based on research and experimental results, more features will increase the rate of recognition in automatic speech recognition. Thus combining classical components used in ASR system such as Crossing Zero, energy, Mel frequency cepstral coefficients with wavelet transform (to extract meaningful formants parameters) followed by a pipelining ordered classifiers GMM and HMM has contributed in reducing the error rate considerably. To implement the approach on a real-time application, a PC interface was designed to control the movements of a four degree of freedom robot arm by transmitting the orders via RF circuits. The voice command system for the robot is designed and tests showed an Improvement by combining techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信