分布式Lovász局部引理的下界

S. Brandt, O. Fischer, J. Hirvonen, Barbara Keller, Tuomo Lempiäinen, J. Rybicki, J. Suomela, Jara Uitto
{"title":"分布式Lovász局部引理的下界","authors":"S. Brandt, O. Fischer, J. Hirvonen, Barbara Keller, Tuomo Lempiäinen, J. Rybicki, J. Suomela, Jara Uitto","doi":"10.1145/2897518.2897570","DOIUrl":null,"url":null,"abstract":"We show that any randomised Monte Carlo distributed algorithm for the Lovász local lemma requires Omega(log log n) communication rounds, assuming that it finds a correct assignment with high probability. Our result holds even in the special case of d = O(1), where d is the maximum degree of the dependency graph. By prior work, there are distributed algorithms for the Lovász local lemma with a running time of O(log n) rounds in bounded-degree graphs, and the best lower bound before our work was Omega(log* n) rounds [Chung et al. 2014].","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"A lower bound for the distributed Lovász local lemma\",\"authors\":\"S. Brandt, O. Fischer, J. Hirvonen, Barbara Keller, Tuomo Lempiäinen, J. Rybicki, J. Suomela, Jara Uitto\",\"doi\":\"10.1145/2897518.2897570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any randomised Monte Carlo distributed algorithm for the Lovász local lemma requires Omega(log log n) communication rounds, assuming that it finds a correct assignment with high probability. Our result holds even in the special case of d = O(1), where d is the maximum degree of the dependency graph. By prior work, there are distributed algorithms for the Lovász local lemma with a running time of O(log n) rounds in bounded-degree graphs, and the best lower bound before our work was Omega(log* n) rounds [Chung et al. 2014].\",\"PeriodicalId\":442965,\"journal\":{\"name\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"volume\":\"386 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897518.2897570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

摘要

我们证明了任何用于Lovász局部引理的随机蒙特卡罗分布式算法都需要Omega(log log n)轮通信,假设它以高概率找到正确的分配。我们的结果即使在d = O(1)的特殊情况下也成立,其中d是依赖图的最大程度。根据之前的工作,Lovász局部引理的分布式算法在有界度图中运行时间为O(log n)轮,在我们的工作之前,最好的下界是Omega(log* n)轮[Chung et al. 2014]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lower bound for the distributed Lovász local lemma
We show that any randomised Monte Carlo distributed algorithm for the Lovász local lemma requires Omega(log log n) communication rounds, assuming that it finds a correct assignment with high probability. Our result holds even in the special case of d = O(1), where d is the maximum degree of the dependency graph. By prior work, there are distributed algorithms for the Lovász local lemma with a running time of O(log n) rounds in bounded-degree graphs, and the best lower bound before our work was Omega(log* n) rounds [Chung et al. 2014].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信