屏蔽s盒电路的模板攻击:静态和动态功率分析的比较

Jiming Xu, H. Heys
{"title":"屏蔽s盒电路的模板攻击:静态和动态功率分析的比较","authors":"Jiming Xu, H. Heys","doi":"10.1109/NEWCAS.2018.8585541","DOIUrl":null,"url":null,"abstract":"Static-power-based side-channel attacks have developed rapidly in the past few years. Many classical side channel attack algorithms have been adapted to exploit static power consumption. There have been successful applications of side-channel attacks based on static power dissipation of cryptographic circuits designed in different technology sizes. In this paper we perform template attacks on a masked s-box circuit designed and simulated using 45-nm CMOS standard cell library. We are the first to compare template attacks using static power and dynamic power in the context of masked sbox implementations. We are able to achieve successful results using both types of power leakage. However, we observe that, in the 45-nm environment, dynamic power analysis requires a high sampling rate for the oscilloscopes used to collect data, while the results of static power analysis are more sensitive to additive noise.","PeriodicalId":112526,"journal":{"name":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Template Attacks of a Masked S-Box Circuit: A Comparison Between Static and Dynamic Power Analyses\",\"authors\":\"Jiming Xu, H. Heys\",\"doi\":\"10.1109/NEWCAS.2018.8585541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static-power-based side-channel attacks have developed rapidly in the past few years. Many classical side channel attack algorithms have been adapted to exploit static power consumption. There have been successful applications of side-channel attacks based on static power dissipation of cryptographic circuits designed in different technology sizes. In this paper we perform template attacks on a masked s-box circuit designed and simulated using 45-nm CMOS standard cell library. We are the first to compare template attacks using static power and dynamic power in the context of masked sbox implementations. We are able to achieve successful results using both types of power leakage. However, we observe that, in the 45-nm environment, dynamic power analysis requires a high sampling rate for the oscilloscopes used to collect data, while the results of static power analysis are more sensitive to additive noise.\",\"PeriodicalId\":112526,\"journal\":{\"name\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2018.8585541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2018.8585541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,基于静功率的旁信道攻击得到了迅速发展。许多经典的侧信道攻击算法已经被用来利用静态功耗。基于静态功耗的侧信道攻击已经成功地应用于不同技术尺寸的加密电路。在本文中,我们使用45纳米CMOS标准单元库对设计和模拟的掩模s盒电路进行模板攻击。我们是第一个在屏蔽sbox实现的背景下比较使用静态功率和动态功率的模板攻击。我们能够使用两种类型的电源泄漏获得成功的结果。然而,我们观察到,在45纳米环境中,动态功率分析需要用于收集数据的示波器的高采样率,而静态功率分析的结果对加性噪声更敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Template Attacks of a Masked S-Box Circuit: A Comparison Between Static and Dynamic Power Analyses
Static-power-based side-channel attacks have developed rapidly in the past few years. Many classical side channel attack algorithms have been adapted to exploit static power consumption. There have been successful applications of side-channel attacks based on static power dissipation of cryptographic circuits designed in different technology sizes. In this paper we perform template attacks on a masked s-box circuit designed and simulated using 45-nm CMOS standard cell library. We are the first to compare template attacks using static power and dynamic power in the context of masked sbox implementations. We are able to achieve successful results using both types of power leakage. However, we observe that, in the 45-nm environment, dynamic power analysis requires a high sampling rate for the oscilloscopes used to collect data, while the results of static power analysis are more sensitive to additive noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信