预兆:基于时间序列的系统和网络性能指标分析和预测应用

Nicolas Gutierrez, Manuela Wiesinger-Widi
{"title":"预兆:基于时间序列的系统和网络性能指标分析和预测应用","authors":"Nicolas Gutierrez, Manuela Wiesinger-Widi","doi":"10.1109/SYNASC.2016.062","DOIUrl":null,"url":null,"abstract":"This paper presents AUGURY, an application for the analysis of monitoring data from computers, servers or cloud infrastructures. The analysis is based on the extraction of patterns and trends from historical data, using elements of time-series analysis. The purpose of AUGURY is to aid a server administrator by forecasting the behaviour and resource usage of specific applications and in presenting a status report in a concise manner. AUGURY provides tools for identifying network traffic congestion and peak usage times, and for making memory usage projections. The application data processing specialises in two tasks: the parametrisation of the memory usage of individual applications and the extraction of the seasonal component from network traffic data. AUGURY uses a different underlying assumption for each of these two tasks. With respect to the memory usage, a limited number of single-valued parameters are assumed to be sufficient to parameterize any application being hosted on the server. Regarding the network traffic data, long-term patterns, such as hourly or daily exist and are being induced by work-time schedules and automatised administrative jobs. In this paper, the implementation of each of the two tasks is presented, tested using locally-generated data, and applied to data from weather forecasting applications hosted on a web server. This data is used to demonstrate the insight that AUGURY can add to the monitoring of server and cloud infrastructures.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AUGURY: A Time Series Based Application for the Analysis and Forecasting of System and Network Performance Metrics\",\"authors\":\"Nicolas Gutierrez, Manuela Wiesinger-Widi\",\"doi\":\"10.1109/SYNASC.2016.062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents AUGURY, an application for the analysis of monitoring data from computers, servers or cloud infrastructures. The analysis is based on the extraction of patterns and trends from historical data, using elements of time-series analysis. The purpose of AUGURY is to aid a server administrator by forecasting the behaviour and resource usage of specific applications and in presenting a status report in a concise manner. AUGURY provides tools for identifying network traffic congestion and peak usage times, and for making memory usage projections. The application data processing specialises in two tasks: the parametrisation of the memory usage of individual applications and the extraction of the seasonal component from network traffic data. AUGURY uses a different underlying assumption for each of these two tasks. With respect to the memory usage, a limited number of single-valued parameters are assumed to be sufficient to parameterize any application being hosted on the server. Regarding the network traffic data, long-term patterns, such as hourly or daily exist and are being induced by work-time schedules and automatised administrative jobs. In this paper, the implementation of each of the two tasks is presented, tested using locally-generated data, and applied to data from weather forecasting applications hosted on a web server. This data is used to demonstrate the insight that AUGURY can add to the monitoring of server and cloud infrastructures.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一个用于分析来自计算机、服务器或云基础设施的监控数据的应用程序。该分析基于从历史数据中提取模式和趋势,使用时间序列分析的元素。auury的目的是通过预测特定应用程序的行为和资源使用以及以简洁的方式呈现状态报告来帮助服务器管理员。auury提供了用于识别网络流量拥塞和峰值使用时间以及进行内存使用预测的工具。应用程序数据处理专注于两个任务:单个应用程序内存使用的参数化和从网络流量数据中提取季节性成分。对于这两个任务,aurury使用了不同的底层假设。关于内存使用,假定有限数量的单值参数足以参数化托管在服务器上的任何应用程序。对于网络流量数据,存在长期模式,如每小时或每天,并由工作时间安排和自动化管理工作引起。本文介绍了这两个任务的实现,使用本地生成的数据进行了测试,并将其应用于托管在web服务器上的天气预报应用程序的数据。该数据用于演示auury可以添加到服务器和云基础设施监控中的洞察力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AUGURY: A Time Series Based Application for the Analysis and Forecasting of System and Network Performance Metrics
This paper presents AUGURY, an application for the analysis of monitoring data from computers, servers or cloud infrastructures. The analysis is based on the extraction of patterns and trends from historical data, using elements of time-series analysis. The purpose of AUGURY is to aid a server administrator by forecasting the behaviour and resource usage of specific applications and in presenting a status report in a concise manner. AUGURY provides tools for identifying network traffic congestion and peak usage times, and for making memory usage projections. The application data processing specialises in two tasks: the parametrisation of the memory usage of individual applications and the extraction of the seasonal component from network traffic data. AUGURY uses a different underlying assumption for each of these two tasks. With respect to the memory usage, a limited number of single-valued parameters are assumed to be sufficient to parameterize any application being hosted on the server. Regarding the network traffic data, long-term patterns, such as hourly or daily exist and are being induced by work-time schedules and automatised administrative jobs. In this paper, the implementation of each of the two tasks is presented, tested using locally-generated data, and applied to data from weather forecasting applications hosted on a web server. This data is used to demonstrate the insight that AUGURY can add to the monitoring of server and cloud infrastructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信