使用参数信号和信道模型的贝叶斯单通道盲反卷积

J. Hopgood, P. Rayner
{"title":"使用参数信号和信道模型的贝叶斯单通道盲反卷积","authors":"J. Hopgood, P. Rayner","doi":"10.1109/ASPAA.1999.810872","DOIUrl":null,"url":null,"abstract":"This paper considers single channel blind deconvolution, in which a degraded observed signal is modelled as the convolution of a non-stationary source signal with a stationary distortion operator. Recovery of the source signal from the observed signal is achieved by modelling the source signal as a time-varying autoregressive process, the distortion operator by a IIR filter, and then using a Bayesian framework to estimate the parameters of the distorting filter, which can be used to deconvolve the observed signal. The paper also discusses how the non-stationary properties of the source signal allow the identification of the distortion operator to be uniquely determined.","PeriodicalId":229733,"journal":{"name":"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Bayesian single channel blind deconvolution using parametric signal and channel models\",\"authors\":\"J. Hopgood, P. Rayner\",\"doi\":\"10.1109/ASPAA.1999.810872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers single channel blind deconvolution, in which a degraded observed signal is modelled as the convolution of a non-stationary source signal with a stationary distortion operator. Recovery of the source signal from the observed signal is achieved by modelling the source signal as a time-varying autoregressive process, the distortion operator by a IIR filter, and then using a Bayesian framework to estimate the parameters of the distorting filter, which can be used to deconvolve the observed signal. The paper also discusses how the non-stationary properties of the source signal allow the identification of the distortion operator to be uniquely determined.\",\"PeriodicalId\":229733,\"journal\":{\"name\":\"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPAA.1999.810872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPAA.1999.810872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文考虑单通道盲反卷积,将退化的观测信号建模为非平稳源信号与平稳失真算子的卷积。通过将源信号建模为时变自回归过程,通过IIR滤波器对失真算子进行建模,然后使用贝叶斯框架估计失真滤波器的参数,该参数可用于对观测信号进行反卷积,从而实现源信号从观测信号中恢复。本文还讨论了源信号的非平稳特性如何允许唯一地确定畸变算子的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian single channel blind deconvolution using parametric signal and channel models
This paper considers single channel blind deconvolution, in which a degraded observed signal is modelled as the convolution of a non-stationary source signal with a stationary distortion operator. Recovery of the source signal from the observed signal is achieved by modelling the source signal as a time-varying autoregressive process, the distortion operator by a IIR filter, and then using a Bayesian framework to estimate the parameters of the distorting filter, which can be used to deconvolve the observed signal. The paper also discusses how the non-stationary properties of the source signal allow the identification of the distortion operator to be uniquely determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信