Isac N. Lira, Pedro Marinho R. de Oliveira, Walter Freitas, V. Zarzoso
{"title":"基于浅卷积神经网络的房颤源自动检测","authors":"Isac N. Lira, Pedro Marinho R. de Oliveira, Walter Freitas, V. Zarzoso","doi":"10.22489/CinC.2020.385","DOIUrl":null,"url":null,"abstract":"Atrial fibrillation (AF) is the most frequent sustained arrhythmia diagnosed in clinical practice. Understanding its electrophysiological mechanisms requires a precise analysis of the atrial activity (AA) signal in ECG recordings. Over the years, signal processing methods have helped cardiologists in this task by noninvasively extracting the AA from the ECG, which can be carried out using blind source separation (BSS) methods. However, the robust automated selection of the AA source among the other sources is still an open issue. Recently, deep learning architectures like convolutional neural networks (CNNs) have gained attention mainly by their power of automatically extracting complex features from signals and classifying them. In this scenario, the present work proposes a shallow CNN model to detect AA sources with an automated feature extraction step overcoming the performance of other methods present in the literature.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Atrial Fibrillation Source Detection Using Shallow Convolutional Neural Networks\",\"authors\":\"Isac N. Lira, Pedro Marinho R. de Oliveira, Walter Freitas, V. Zarzoso\",\"doi\":\"10.22489/CinC.2020.385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial fibrillation (AF) is the most frequent sustained arrhythmia diagnosed in clinical practice. Understanding its electrophysiological mechanisms requires a precise analysis of the atrial activity (AA) signal in ECG recordings. Over the years, signal processing methods have helped cardiologists in this task by noninvasively extracting the AA from the ECG, which can be carried out using blind source separation (BSS) methods. However, the robust automated selection of the AA source among the other sources is still an open issue. Recently, deep learning architectures like convolutional neural networks (CNNs) have gained attention mainly by their power of automatically extracting complex features from signals and classifying them. In this scenario, the present work proposes a shallow CNN model to detect AA sources with an automated feature extraction step overcoming the performance of other methods present in the literature.\",\"PeriodicalId\":407282,\"journal\":{\"name\":\"2020 Computing in Cardiology\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Computing in Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2020.385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Atrial Fibrillation Source Detection Using Shallow Convolutional Neural Networks
Atrial fibrillation (AF) is the most frequent sustained arrhythmia diagnosed in clinical practice. Understanding its electrophysiological mechanisms requires a precise analysis of the atrial activity (AA) signal in ECG recordings. Over the years, signal processing methods have helped cardiologists in this task by noninvasively extracting the AA from the ECG, which can be carried out using blind source separation (BSS) methods. However, the robust automated selection of the AA source among the other sources is still an open issue. Recently, deep learning architectures like convolutional neural networks (CNNs) have gained attention mainly by their power of automatically extracting complex features from signals and classifying them. In this scenario, the present work proposes a shallow CNN model to detect AA sources with an automated feature extraction step overcoming the performance of other methods present in the literature.