PSFGA:多目标优化的并行遗传算法

F. D. Toro, J. Ortega, Javier Fernández, A. F. Díaz
{"title":"PSFGA:多目标优化的并行遗传算法","authors":"F. D. Toro, J. Ortega, Javier Fernández, A. F. Díaz","doi":"10.1109/EMPDP.2002.994315","DOIUrl":null,"url":null,"abstract":"This paper presents the parallel single front genetic algorithm (PSFGA), a parallel Pareto-based algorithm for multiobjective optimization problems based on an evolutionary procedure. In this procedure, a population of solutions is sorted with respect to the values of the objective functions and partitioned into subpopulations which are distributed among the processors. Each processor applies a sequential multiobjective genetic algorithm that we have devised (called single front genetic algorithm, SFGA) to its subpopulation. Experimental results are provided comparing PSFGA with previously proposed multiobjective evolutionary algorithms.","PeriodicalId":126071,"journal":{"name":"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"PSFGA: a parallel genetic algorithm for multiobjective optimization\",\"authors\":\"F. D. Toro, J. Ortega, Javier Fernández, A. F. Díaz\",\"doi\":\"10.1109/EMPDP.2002.994315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the parallel single front genetic algorithm (PSFGA), a parallel Pareto-based algorithm for multiobjective optimization problems based on an evolutionary procedure. In this procedure, a population of solutions is sorted with respect to the values of the objective functions and partitioned into subpopulations which are distributed among the processors. Each processor applies a sequential multiobjective genetic algorithm that we have devised (called single front genetic algorithm, SFGA) to its subpopulation. Experimental results are provided comparing PSFGA with previously proposed multiobjective evolutionary algorithms.\",\"PeriodicalId\":126071,\"journal\":{\"name\":\"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMPDP.2002.994315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPDP.2002.994315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

提出了并行单前端遗传算法(PSFGA),这是一种基于进化过程的并行pareto优化算法。在此过程中,将解的总体根据目标函数的值进行排序,并将其划分为分布在处理器之间的子总体。每个处理器将我们设计的顺序多目标遗传算法(称为单前端遗传算法,SFGA)应用于其子种群。实验结果将PSFGA算法与已有的多目标进化算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PSFGA: a parallel genetic algorithm for multiobjective optimization
This paper presents the parallel single front genetic algorithm (PSFGA), a parallel Pareto-based algorithm for multiobjective optimization problems based on an evolutionary procedure. In this procedure, a population of solutions is sorted with respect to the values of the objective functions and partitioned into subpopulations which are distributed among the processors. Each processor applies a sequential multiobjective genetic algorithm that we have devised (called single front genetic algorithm, SFGA) to its subpopulation. Experimental results are provided comparing PSFGA with previously proposed multiobjective evolutionary algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信