卡钻连续油管回收的挑战与实践

S. Hassig Fonseca, R. Torres, Z. Liu, F. Jahn, G. Tagarot, S. Baca, H. Guevara, J. Botan, C. Villacres, J. Boas
{"title":"卡钻连续油管回收的挑战与实践","authors":"S. Hassig Fonseca, R. Torres, Z. Liu, F. Jahn, G. Tagarot, S. Baca, H. Guevara, J. Botan, C. Villacres, J. Boas","doi":"10.2118/215819-pa","DOIUrl":null,"url":null,"abstract":"\n Stuck coiled tubing (CT) is a main operational risk leading to delays, deferred production, or even the loss of a well. Despite general commonalities, each CT recovery can face unique challenges, including managing high pressure, working under limited spatial or lifting constraints, establishing well control, or handling a cable inside the CT.\n This study consolidates learnings and proposes a general workflow for a basic stuck pipe scenario, rig up, recovery pressure control equipment (RPCE) and well control, CT free point evaluation, bottomhole assemblies (BHAs) and workflows for cutting and freeing the CT pipe downhole, and recovery of the CT at the surface. A consolidation of published case studies provides specific examples of the hardware, workflows, and operational considerations. In addition, the presentation of a recent case study extends the discussion to the challenges introduced by the presence of a cable in the stuck CT and its respective solution.\n The case study reviews the planning and execution of a CT recovery, including the use of decision trees to guide the decision-making process. It details fit-for-purpose hardware for safely anchoring the cable; packoffs for accessing, tensioning, and recovering it with slickline (SLK); an opening for deploying the wireline (WL) cutting BHA; and valves for pressure testing and well control. That workflow successfully freed 6,818 ft of stuck CT and allowed recovery of the pipe without a workover rig on location, eliminating 11 days of rig time during subsequent tubing pulling. This is the first such documented recovery case worldwide based on a thorough literature review.","PeriodicalId":153181,"journal":{"name":"SPE Production & Operations","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges and Practices for Recovering Stuck Coiled Tubing Pipe\",\"authors\":\"S. Hassig Fonseca, R. Torres, Z. Liu, F. Jahn, G. Tagarot, S. Baca, H. Guevara, J. Botan, C. Villacres, J. Boas\",\"doi\":\"10.2118/215819-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Stuck coiled tubing (CT) is a main operational risk leading to delays, deferred production, or even the loss of a well. Despite general commonalities, each CT recovery can face unique challenges, including managing high pressure, working under limited spatial or lifting constraints, establishing well control, or handling a cable inside the CT.\\n This study consolidates learnings and proposes a general workflow for a basic stuck pipe scenario, rig up, recovery pressure control equipment (RPCE) and well control, CT free point evaluation, bottomhole assemblies (BHAs) and workflows for cutting and freeing the CT pipe downhole, and recovery of the CT at the surface. A consolidation of published case studies provides specific examples of the hardware, workflows, and operational considerations. In addition, the presentation of a recent case study extends the discussion to the challenges introduced by the presence of a cable in the stuck CT and its respective solution.\\n The case study reviews the planning and execution of a CT recovery, including the use of decision trees to guide the decision-making process. It details fit-for-purpose hardware for safely anchoring the cable; packoffs for accessing, tensioning, and recovering it with slickline (SLK); an opening for deploying the wireline (WL) cutting BHA; and valves for pressure testing and well control. That workflow successfully freed 6,818 ft of stuck CT and allowed recovery of the pipe without a workover rig on location, eliminating 11 days of rig time during subsequent tubing pulling. This is the first such documented recovery case worldwide based on a thorough literature review.\",\"PeriodicalId\":153181,\"journal\":{\"name\":\"SPE Production & Operations\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Production & Operations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/215819-pa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Production & Operations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/215819-pa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

连续油管卡钻是一种主要的作业风险,会导致延迟、延迟生产,甚至导致一口井的漏失。尽管具有共性,但每一种连续油管采油都面临着独特的挑战,包括高压管理、有限空间或提升限制、建立井控或处理连续油管内的电缆。该研究巩固了学习成果,并提出了基本卡钻情况的一般工作流程,包括钻机、恢复压力控制设备(RPCE)和井控、连续油管自由点评估、底部钻具组合(BHAs)以及井下连续油管切割和释放以及地面连续油管回收的工作流程。已发布的案例研究的整合提供了硬件、工作流和操作注意事项的具体示例。此外,介绍了最近的一个案例研究,将讨论扩展到卡钻CT中存在电缆所带来的挑战以及相应的解决方案。该案例研究回顾了连续油管恢复的计划和执行,包括使用决策树来指导决策过程。它详细介绍了用于安全锚固电缆的专用硬件;用于下入、张紧和使用钢丝绳(SLK)回收的封隔器;为部署电缆(WL)切割BHA提供了机会;以及用于压力测试和井控的阀门。该工作流程成功地释放了6818英尺的连续油管卡钻,无需修井机即可回收油管,在随后的拔油管过程中节省了11天的钻机时间。这是第一个这样的记录恢复情况下,世界范围内基于彻底的文献回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges and Practices for Recovering Stuck Coiled Tubing Pipe
Stuck coiled tubing (CT) is a main operational risk leading to delays, deferred production, or even the loss of a well. Despite general commonalities, each CT recovery can face unique challenges, including managing high pressure, working under limited spatial or lifting constraints, establishing well control, or handling a cable inside the CT. This study consolidates learnings and proposes a general workflow for a basic stuck pipe scenario, rig up, recovery pressure control equipment (RPCE) and well control, CT free point evaluation, bottomhole assemblies (BHAs) and workflows for cutting and freeing the CT pipe downhole, and recovery of the CT at the surface. A consolidation of published case studies provides specific examples of the hardware, workflows, and operational considerations. In addition, the presentation of a recent case study extends the discussion to the challenges introduced by the presence of a cable in the stuck CT and its respective solution. The case study reviews the planning and execution of a CT recovery, including the use of decision trees to guide the decision-making process. It details fit-for-purpose hardware for safely anchoring the cable; packoffs for accessing, tensioning, and recovering it with slickline (SLK); an opening for deploying the wireline (WL) cutting BHA; and valves for pressure testing and well control. That workflow successfully freed 6,818 ft of stuck CT and allowed recovery of the pipe without a workover rig on location, eliminating 11 days of rig time during subsequent tubing pulling. This is the first such documented recovery case worldwide based on a thorough literature review.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信