刺状树突中分数动力学的出现

S. Vitali, F. Mainardi, G. Castellani
{"title":"刺状树突中分数动力学的出现","authors":"S. Vitali, F. Mainardi, G. Castellani","doi":"10.3390/fractalfract2010006","DOIUrl":null,"url":null,"abstract":"Fractional extensions of the cable equation have been proposed in the literature to describe transmembrane potential in spiny dendrites. The anomalous behavior has been related in the literature to the geometrical properties of the system, in particular, the density of spines, by experiments, computer simulations, and in comb-like models. The same PDE can be related to more than one stochastic process leading to anomalous diffusion behavior. The time-fractional diffusion equation can be associated to a continuous time random walk (CTRW) with power-law waiting time probability or to a special case of the Erdely-Kober fractional diffusion, described by the ggBm. In this work, we show that time fractional generalization of the cable equation arises naturally in the CTRW by considering a superposition of Markovian processes and in a ggBm-like construction of the random variable.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Emergence of Fractional Kinetics in Spiny Dendrites\",\"authors\":\"S. Vitali, F. Mainardi, G. Castellani\",\"doi\":\"10.3390/fractalfract2010006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional extensions of the cable equation have been proposed in the literature to describe transmembrane potential in spiny dendrites. The anomalous behavior has been related in the literature to the geometrical properties of the system, in particular, the density of spines, by experiments, computer simulations, and in comb-like models. The same PDE can be related to more than one stochastic process leading to anomalous diffusion behavior. The time-fractional diffusion equation can be associated to a continuous time random walk (CTRW) with power-law waiting time probability or to a special case of the Erdely-Kober fractional diffusion, described by the ggBm. In this work, we show that time fractional generalization of the cable equation arises naturally in the CTRW by considering a superposition of Markovian processes and in a ggBm-like construction of the random variable.\",\"PeriodicalId\":298664,\"journal\":{\"name\":\"arXiv: Neurons and Cognition\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract2010006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract2010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

文献中提出了索方程的分数扩展来描述刺状树突的跨膜电位。在文献中,通过实验、计算机模拟和梳状模型,将异常行为与系统的几何特性,特别是棘的密度联系起来。相同的偏微分方程可以与多个导致异常扩散行为的随机过程有关。时间-分数扩散方程可以与具有幂律等待时间概率的连续时间随机漫步(CTRW)联系起来,也可以与由ggBm描述的Erdely-Kober分数扩散的特殊情况联系起来。在这项工作中,我们证明了通过考虑马尔可夫过程的叠加和随机变量的ggBm-like构造,在CTRW中自然产生了电缆方程的时间分数泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergence of Fractional Kinetics in Spiny Dendrites
Fractional extensions of the cable equation have been proposed in the literature to describe transmembrane potential in spiny dendrites. The anomalous behavior has been related in the literature to the geometrical properties of the system, in particular, the density of spines, by experiments, computer simulations, and in comb-like models. The same PDE can be related to more than one stochastic process leading to anomalous diffusion behavior. The time-fractional diffusion equation can be associated to a continuous time random walk (CTRW) with power-law waiting time probability or to a special case of the Erdely-Kober fractional diffusion, described by the ggBm. In this work, we show that time fractional generalization of the cable equation arises naturally in the CTRW by considering a superposition of Markovian processes and in a ggBm-like construction of the random variable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信