基于局部特征变换模块的无监督双向风格转移网络

K. Bae, Hyungil Kim, Y. Kwon, Jinyoung Moon
{"title":"基于局部特征变换模块的无监督双向风格转移网络","authors":"K. Bae, Hyungil Kim, Y. Kwon, Jinyoung Moon","doi":"10.1109/CVPRW59228.2023.00081","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a bidirectional style transfer method by exchanging the style of inputs while preserving the structural information. The proposed bidirectional style transfer network consists of three modules: 1) content and style extraction module that extracts the structure and style-related features, 2) local feature transform module that aligns locally extracted feature to its original coordinate, and 3) reconstruction module that generates a newly stylized image. Given two input images, we extract content and style information from both images in a global and local manner, respectively. Note that the content extraction module removes style-related information by compressing the dimension of the feature tensor to a single channel. The style extraction module removes content information by gradually reducing the spatial size of a feature tensor. The local feature transform module exchanges the style information and spatially transforms the local features to its original location. By substituting the style information with one another in both ways (i.e., global and local) bidirectionally, the reconstruction module generates a newly stylized image without diminishing the core structure. Furthermore, we enable the proposed network to control the degree of style to be applied when exchanging the style of inputs bidirectionally. Through the experiments, we compare the bidirectionally style transferred results with existing methods quantitatively and qualitatively. We show generation results by controlling the degree of applied style and adopting various textures to an identical structure.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Bidirectional Style Transfer Network using Local Feature Transform Module\",\"authors\":\"K. Bae, Hyungil Kim, Y. Kwon, Jinyoung Moon\",\"doi\":\"10.1109/CVPRW59228.2023.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a bidirectional style transfer method by exchanging the style of inputs while preserving the structural information. The proposed bidirectional style transfer network consists of three modules: 1) content and style extraction module that extracts the structure and style-related features, 2) local feature transform module that aligns locally extracted feature to its original coordinate, and 3) reconstruction module that generates a newly stylized image. Given two input images, we extract content and style information from both images in a global and local manner, respectively. Note that the content extraction module removes style-related information by compressing the dimension of the feature tensor to a single channel. The style extraction module removes content information by gradually reducing the spatial size of a feature tensor. The local feature transform module exchanges the style information and spatially transforms the local features to its original location. By substituting the style information with one another in both ways (i.e., global and local) bidirectionally, the reconstruction module generates a newly stylized image without diminishing the core structure. Furthermore, we enable the proposed network to control the degree of style to be applied when exchanging the style of inputs bidirectionally. Through the experiments, we compare the bidirectionally style transferred results with existing methods quantitatively and qualitatively. We show generation results by controlling the degree of applied style and adopting various textures to an identical structure.\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种双向风格转换方法,在交换输入风格的同时保留结构信息。本文提出的双向风格传递网络由三个模块组成:1)内容和风格提取模块,提取与结构和风格相关的特征;2)局部特征变换模块,将局部提取的特征与原始坐标对齐;3)重建模块,生成新的风格化图像。给定两幅输入图像,我们分别以全局和局部的方式从这两幅图像中提取内容和样式信息。请注意,内容提取模块通过将特征张量的维度压缩到单个通道来删除与样式相关的信息。样式提取模块通过逐渐减小特征张量的空间大小来去除内容信息。局部特征转换模块交换样式信息,并将局部特征在空间上转换到其原始位置。通过以两种方式(即全局和局部)双向替换样式信息,重构模块生成新的风格化图像,而不会减少核心结构。此外,我们使所提出的网络能够在双向交换输入风格时控制要应用的风格程度。通过实验,我们将双向风格转换的结果与现有方法进行了定量和定性的比较。我们通过控制应用风格的程度和在同一结构中采用不同的纹理来显示生成结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Bidirectional Style Transfer Network using Local Feature Transform Module
In this paper, we propose a bidirectional style transfer method by exchanging the style of inputs while preserving the structural information. The proposed bidirectional style transfer network consists of three modules: 1) content and style extraction module that extracts the structure and style-related features, 2) local feature transform module that aligns locally extracted feature to its original coordinate, and 3) reconstruction module that generates a newly stylized image. Given two input images, we extract content and style information from both images in a global and local manner, respectively. Note that the content extraction module removes style-related information by compressing the dimension of the feature tensor to a single channel. The style extraction module removes content information by gradually reducing the spatial size of a feature tensor. The local feature transform module exchanges the style information and spatially transforms the local features to its original location. By substituting the style information with one another in both ways (i.e., global and local) bidirectionally, the reconstruction module generates a newly stylized image without diminishing the core structure. Furthermore, we enable the proposed network to control the degree of style to be applied when exchanging the style of inputs bidirectionally. Through the experiments, we compare the bidirectionally style transferred results with existing methods quantitatively and qualitatively. We show generation results by controlling the degree of applied style and adopting various textures to an identical structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信