基于深度学习的东帝汶道路坑洞检测方法

Vosco Pereira, S. Tamura, S. Hayamizu, Hidekazu Fukai
{"title":"基于深度学习的东帝汶道路坑洞检测方法","authors":"Vosco Pereira, S. Tamura, S. Hayamizu, Hidekazu Fukai","doi":"10.1109/SOLI.2018.8476795","DOIUrl":null,"url":null,"abstract":"This research proposes a low-cost solution for detecting road potholes image by using convolutional neural network (CNN). Our model is trained entirely on the image which collected from several different places and has variation such as in wet, dry and shady conditions. The experiment using the 500 testing images showed that our model can achieve (99.80 %) of Accuracy, Precision (100%), Recall (99.60%), and F-Measure (99.60%) simultaneously.","PeriodicalId":424115,"journal":{"name":"2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"A Deep Learning-Based Approach for Road Pothole Detection in Timor Leste\",\"authors\":\"Vosco Pereira, S. Tamura, S. Hayamizu, Hidekazu Fukai\",\"doi\":\"10.1109/SOLI.2018.8476795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a low-cost solution for detecting road potholes image by using convolutional neural network (CNN). Our model is trained entirely on the image which collected from several different places and has variation such as in wet, dry and shady conditions. The experiment using the 500 testing images showed that our model can achieve (99.80 %) of Accuracy, Precision (100%), Recall (99.60%), and F-Measure (99.60%) simultaneously.\",\"PeriodicalId\":424115,\"journal\":{\"name\":\"2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOLI.2018.8476795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOLI.2018.8476795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

本研究提出了一种基于卷积神经网络(CNN)的低成本道路坑洼图像检测方法。我们的模型完全是在从几个不同的地方收集的图像上进行训练的,这些图像在潮湿、干燥和阴凉的条件下都有变化。使用500张测试图像的实验表明,我们的模型可以同时达到99.80%的准确率、100%的精密度、99.60%的召回率和99.60%的F-Measure值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning-Based Approach for Road Pothole Detection in Timor Leste
This research proposes a low-cost solution for detecting road potholes image by using convolutional neural network (CNN). Our model is trained entirely on the image which collected from several different places and has variation such as in wet, dry and shady conditions. The experiment using the 500 testing images showed that our model can achieve (99.80 %) of Accuracy, Precision (100%), Recall (99.60%), and F-Measure (99.60%) simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信