{"title":"使用与应用程序无关的性能预测的经济高效的弹性流处理","authors":"Shigeru Imai, S. Patterson, Carlos A. Varela","doi":"10.1109/CCGrid.2016.89","DOIUrl":null,"url":null,"abstract":"Cloud computing adds great on-demand scalability to stream processing systems with its pay-per-use cost model. However, to promise service level agreements to users while keeping resource allocation cost low is a challenging task due to uncertainties coming from various sources, such as the target application's scalability, future computational demand, and the target cloud infrastructure's performance variability. To deal with these uncertainties, it is essential to create accurate application performance prediction models. In cloud computing, the current state of the art in performance modelling remains application-specific. We propose an application-agnostic performance modeling that is applicable to a wide range of applications. We also propose an extension to probabilistic performance prediction. This paper reports the progress we have made so far.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"66 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cost-Efficient Elastic Stream Processing Using Application-Agnostic Performance Prediction\",\"authors\":\"Shigeru Imai, S. Patterson, Carlos A. Varela\",\"doi\":\"10.1109/CCGrid.2016.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing adds great on-demand scalability to stream processing systems with its pay-per-use cost model. However, to promise service level agreements to users while keeping resource allocation cost low is a challenging task due to uncertainties coming from various sources, such as the target application's scalability, future computational demand, and the target cloud infrastructure's performance variability. To deal with these uncertainties, it is essential to create accurate application performance prediction models. In cloud computing, the current state of the art in performance modelling remains application-specific. We propose an application-agnostic performance modeling that is applicable to a wide range of applications. We also propose an extension to probabilistic performance prediction. This paper reports the progress we have made so far.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"66 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost-Efficient Elastic Stream Processing Using Application-Agnostic Performance Prediction
Cloud computing adds great on-demand scalability to stream processing systems with its pay-per-use cost model. However, to promise service level agreements to users while keeping resource allocation cost low is a challenging task due to uncertainties coming from various sources, such as the target application's scalability, future computational demand, and the target cloud infrastructure's performance variability. To deal with these uncertainties, it is essential to create accurate application performance prediction models. In cloud computing, the current state of the art in performance modelling remains application-specific. We propose an application-agnostic performance modeling that is applicable to a wide range of applications. We also propose an extension to probabilistic performance prediction. This paper reports the progress we have made so far.