使用与应用程序无关的性能预测的经济高效的弹性流处理

Shigeru Imai, S. Patterson, Carlos A. Varela
{"title":"使用与应用程序无关的性能预测的经济高效的弹性流处理","authors":"Shigeru Imai, S. Patterson, Carlos A. Varela","doi":"10.1109/CCGrid.2016.89","DOIUrl":null,"url":null,"abstract":"Cloud computing adds great on-demand scalability to stream processing systems with its pay-per-use cost model. However, to promise service level agreements to users while keeping resource allocation cost low is a challenging task due to uncertainties coming from various sources, such as the target application's scalability, future computational demand, and the target cloud infrastructure's performance variability. To deal with these uncertainties, it is essential to create accurate application performance prediction models. In cloud computing, the current state of the art in performance modelling remains application-specific. We propose an application-agnostic performance modeling that is applicable to a wide range of applications. We also propose an extension to probabilistic performance prediction. This paper reports the progress we have made so far.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"66 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cost-Efficient Elastic Stream Processing Using Application-Agnostic Performance Prediction\",\"authors\":\"Shigeru Imai, S. Patterson, Carlos A. Varela\",\"doi\":\"10.1109/CCGrid.2016.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing adds great on-demand scalability to stream processing systems with its pay-per-use cost model. However, to promise service level agreements to users while keeping resource allocation cost low is a challenging task due to uncertainties coming from various sources, such as the target application's scalability, future computational demand, and the target cloud infrastructure's performance variability. To deal with these uncertainties, it is essential to create accurate application performance prediction models. In cloud computing, the current state of the art in performance modelling remains application-specific. We propose an application-agnostic performance modeling that is applicable to a wide range of applications. We also propose an extension to probabilistic performance prediction. This paper reports the progress we have made so far.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"66 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

云计算通过其按使用付费的成本模型为流处理系统增加了强大的按需可伸缩性。然而,在向用户承诺服务水平协议的同时保持较低的资源分配成本是一项具有挑战性的任务,因为各种来源的不确定性,例如目标应用程序的可伸缩性、未来的计算需求和目标云基础设施的性能可变性。为了处理这些不确定性,必须创建准确的应用程序性能预测模型。在云计算中,性能建模的当前状态仍然是特定于应用程序的。我们提出了一个应用程序无关的性能建模,适用于广泛的应用程序。我们还提出了对概率性能预测的扩展。本文报告了我们迄今取得的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-Efficient Elastic Stream Processing Using Application-Agnostic Performance Prediction
Cloud computing adds great on-demand scalability to stream processing systems with its pay-per-use cost model. However, to promise service level agreements to users while keeping resource allocation cost low is a challenging task due to uncertainties coming from various sources, such as the target application's scalability, future computational demand, and the target cloud infrastructure's performance variability. To deal with these uncertainties, it is essential to create accurate application performance prediction models. In cloud computing, the current state of the art in performance modelling remains application-specific. We propose an application-agnostic performance modeling that is applicable to a wide range of applications. We also propose an extension to probabilistic performance prediction. This paper reports the progress we have made so far.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信