{"title":"Decawave DW1000和DW3000在低功耗双侧测距应用中的性能比较","authors":"T. Polonelli, Simon Schläpfer, M. Magno","doi":"10.1109/SAS54819.2022.9881375","DOIUrl":null,"url":null,"abstract":"Indoor localization and context-awareness are becoming two of the key technologies for a large variety of applications. Real-time locating systems with centimeter accuracy and low power consumption have recently been made available by employing the Ultra WideBand (UWB) technology. Since 2015, Decawave has produced commercial UWB integrated circuits, exploiting time-of-flight measurement techniques to estimate the distance between two agents. This work presents a performance study between two Decawave transceivers, the DW1000 and the new DW3000 released in 2020. The testing space includes areas under line-of-sight and diverse non-line-of-sight conditions caused by the reflection of the UWB radio signals across various obstacles. Finally, we analyze the power consumption in distinct configurations, comparing the two devices. Results show that the two have similar precision in measurement ranges above one meter, while the DW3000 performs, on average, 33.2% better considering shorter distances. Moreover, the new transceiver features reduced power consumption by almost 50% during real-time measurements reaching an average value of 55 mW.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Comparison between Decawave DW1000 and DW3000 in low-power double side ranging applications\",\"authors\":\"T. Polonelli, Simon Schläpfer, M. Magno\",\"doi\":\"10.1109/SAS54819.2022.9881375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor localization and context-awareness are becoming two of the key technologies for a large variety of applications. Real-time locating systems with centimeter accuracy and low power consumption have recently been made available by employing the Ultra WideBand (UWB) technology. Since 2015, Decawave has produced commercial UWB integrated circuits, exploiting time-of-flight measurement techniques to estimate the distance between two agents. This work presents a performance study between two Decawave transceivers, the DW1000 and the new DW3000 released in 2020. The testing space includes areas under line-of-sight and diverse non-line-of-sight conditions caused by the reflection of the UWB radio signals across various obstacles. Finally, we analyze the power consumption in distinct configurations, comparing the two devices. Results show that the two have similar precision in measurement ranges above one meter, while the DW3000 performs, on average, 33.2% better considering shorter distances. Moreover, the new transceiver features reduced power consumption by almost 50% during real-time measurements reaching an average value of 55 mW.\",\"PeriodicalId\":129732,\"journal\":{\"name\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS54819.2022.9881375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Comparison between Decawave DW1000 and DW3000 in low-power double side ranging applications
Indoor localization and context-awareness are becoming two of the key technologies for a large variety of applications. Real-time locating systems with centimeter accuracy and low power consumption have recently been made available by employing the Ultra WideBand (UWB) technology. Since 2015, Decawave has produced commercial UWB integrated circuits, exploiting time-of-flight measurement techniques to estimate the distance between two agents. This work presents a performance study between two Decawave transceivers, the DW1000 and the new DW3000 released in 2020. The testing space includes areas under line-of-sight and diverse non-line-of-sight conditions caused by the reflection of the UWB radio signals across various obstacles. Finally, we analyze the power consumption in distinct configurations, comparing the two devices. Results show that the two have similar precision in measurement ranges above one meter, while the DW3000 performs, on average, 33.2% better considering shorter distances. Moreover, the new transceiver features reduced power consumption by almost 50% during real-time measurements reaching an average value of 55 mW.