基于Metropolis规则的混合型社会情感优化算法

Jianna Wu, Z. Cui, Jing Liu
{"title":"基于Metropolis规则的混合型社会情感优化算法","authors":"Jianna Wu, Z. Cui, Jing Liu","doi":"10.1109/ICMIC.2011.5973732","DOIUrl":null,"url":null,"abstract":"Social emotional optimization algorithm (SEOA) is a novel swarm intelligent population-based optimization algorithm by simulating the human social behaviors. However, it's diversity is decreased increased when solving high-dimensional multi-modal optimization problems. Therefore, in this paper, a new hybrid SEOA with Metropolis rule is introduced to enhance the exploration capability. To test the performance, five famous benchmarks are selected, and compared with the standard version with different dimensions. Simulation results show this hybrid algorithm can increase the global search capability significantly.","PeriodicalId":210380,"journal":{"name":"Proceedings of 2011 International Conference on Modelling, Identification and Control","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A hybrid social emotional optimization algorithm with Metropolis rule\",\"authors\":\"Jianna Wu, Z. Cui, Jing Liu\",\"doi\":\"10.1109/ICMIC.2011.5973732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social emotional optimization algorithm (SEOA) is a novel swarm intelligent population-based optimization algorithm by simulating the human social behaviors. However, it's diversity is decreased increased when solving high-dimensional multi-modal optimization problems. Therefore, in this paper, a new hybrid SEOA with Metropolis rule is introduced to enhance the exploration capability. To test the performance, five famous benchmarks are selected, and compared with the standard version with different dimensions. Simulation results show this hybrid algorithm can increase the global search capability significantly.\",\"PeriodicalId\":210380,\"journal\":{\"name\":\"Proceedings of 2011 International Conference on Modelling, Identification and Control\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 International Conference on Modelling, Identification and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2011.5973732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 International Conference on Modelling, Identification and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2011.5973732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

社会情感优化算法(SEOA)是一种模拟人类社会行为的基于群体智能群体的优化算法。然而,在求解高维多模态优化问题时,算法的多样性有所下降。为此,本文提出了一种新的基于Metropolis规则的混合型SEOA,以增强其搜索能力。为了测试性能,选择了五个著名的基准测试,并与不同维度的标准版本进行了比较。仿真结果表明,该混合算法能显著提高全局搜索能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid social emotional optimization algorithm with Metropolis rule
Social emotional optimization algorithm (SEOA) is a novel swarm intelligent population-based optimization algorithm by simulating the human social behaviors. However, it's diversity is decreased increased when solving high-dimensional multi-modal optimization problems. Therefore, in this paper, a new hybrid SEOA with Metropolis rule is introduced to enhance the exploration capability. To test the performance, five famous benchmarks are selected, and compared with the standard version with different dimensions. Simulation results show this hybrid algorithm can increase the global search capability significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信