大数据应用中可扩展和可重用加速器的设计

C. Pilato, Qirui Xu, Paolo Mantovani, G. D. Guglielmo, L. Carloni
{"title":"大数据应用中可扩展和可重用加速器的设计","authors":"C. Pilato, Qirui Xu, Paolo Mantovani, G. D. Guglielmo, L. Carloni","doi":"10.1145/2903150.2906141","DOIUrl":null,"url":null,"abstract":"Accelerators are becoming key elements of computing platforms for both data centers and mobile devices as they deliver energy-efficient high performance for key computational kernels. However, the design and integration of such components is complex, especially for Big Data applications where they have very large workloads to elaborate. Properly customizing the accelerators' private local memories (PLMs) is of critical importance. To analyze this problem we design an accelerator for Collaborative Filtering by applying a system-level design methodology that allows us to synthesize many alternative micro-architectures as we vary the PLM sizes. We then evaluate the resulting accelerators in terms of resource requirements for both embedded architectures and data centers as we vary the size and density of the workloads.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On the design of scalable and reusable accelerators for big data applications\",\"authors\":\"C. Pilato, Qirui Xu, Paolo Mantovani, G. D. Guglielmo, L. Carloni\",\"doi\":\"10.1145/2903150.2906141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerators are becoming key elements of computing platforms for both data centers and mobile devices as they deliver energy-efficient high performance for key computational kernels. However, the design and integration of such components is complex, especially for Big Data applications where they have very large workloads to elaborate. Properly customizing the accelerators' private local memories (PLMs) is of critical importance. To analyze this problem we design an accelerator for Collaborative Filtering by applying a system-level design methodology that allows us to synthesize many alternative micro-architectures as we vary the PLM sizes. We then evaluate the resulting accelerators in terms of resource requirements for both embedded architectures and data centers as we vary the size and density of the workloads.\",\"PeriodicalId\":226569,\"journal\":{\"name\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2903150.2906141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2906141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

加速器正在成为数据中心和移动设备计算平台的关键元素,因为它们为关键的计算内核提供了高能效和高性能。然而,这些组件的设计和集成是复杂的,特别是对于大数据应用程序,它们有非常大的工作负载需要精心设计。适当地定制加速器的私有局部存储器(plm)是至关重要的。为了分析这个问题,我们通过应用系统级设计方法设计了一个协同过滤加速器,该方法允许我们在不同PLM尺寸时综合许多可选的微架构。然后,随着工作负载的大小和密度的变化,我们根据嵌入式架构和数据中心的资源需求来评估生成的加速器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the design of scalable and reusable accelerators for big data applications
Accelerators are becoming key elements of computing platforms for both data centers and mobile devices as they deliver energy-efficient high performance for key computational kernels. However, the design and integration of such components is complex, especially for Big Data applications where they have very large workloads to elaborate. Properly customizing the accelerators' private local memories (PLMs) is of critical importance. To analyze this problem we design an accelerator for Collaborative Filtering by applying a system-level design methodology that allows us to synthesize many alternative micro-architectures as we vary the PLM sizes. We then evaluate the resulting accelerators in terms of resource requirements for both embedded architectures and data centers as we vary the size and density of the workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信