基于协同感知深度卷积网络的遮挡目标检测

Ce Li, Xinyu Zhao, Hao Liu, Limei Xiao
{"title":"基于协同感知深度卷积网络的遮挡目标检测","authors":"Ce Li, Xinyu Zhao, Hao Liu, Limei Xiao","doi":"10.1109/ACPR.2017.90","DOIUrl":null,"url":null,"abstract":"Object detection is one of the important problems in computer vision. But external occlusion often cause object features missing which lead to a big challenge of object detection. Aim at the problem of occlusion object detection and try to describe object features more effectively; we proposed a collaborative sensing deep convolution network to achieve co-detection by global and partial features of objects. Firstly, we divide the global and partial of the object, it means we segment parent and child in an object. Then, the joint detection network of parent and child is constructed. Finally, through the collaborative detection we achieve the precise positioning and recognition about parents. The proposed algorithm effectively solves the problem that object can not be detected due to missing features. We also ensure the accuracy of parent construction by child. Experiment results demonstrate that our algorithm performs better than other state-of-the-art methods.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"367 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Occlusion Object Detection via Collaborative Sensing Deep Convolution Network\",\"authors\":\"Ce Li, Xinyu Zhao, Hao Liu, Limei Xiao\",\"doi\":\"10.1109/ACPR.2017.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection is one of the important problems in computer vision. But external occlusion often cause object features missing which lead to a big challenge of object detection. Aim at the problem of occlusion object detection and try to describe object features more effectively; we proposed a collaborative sensing deep convolution network to achieve co-detection by global and partial features of objects. Firstly, we divide the global and partial of the object, it means we segment parent and child in an object. Then, the joint detection network of parent and child is constructed. Finally, through the collaborative detection we achieve the precise positioning and recognition about parents. The proposed algorithm effectively solves the problem that object can not be detected due to missing features. We also ensure the accuracy of parent construction by child. Experiment results demonstrate that our algorithm performs better than other state-of-the-art methods.\",\"PeriodicalId\":426561,\"journal\":{\"name\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"367 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2017.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目标检测是计算机视觉中的一个重要问题。但外遮挡往往会导致目标特征缺失,给目标检测带来很大挑战。针对遮挡目标检测问题,尝试更有效地描述目标特征;提出了一种基于全局特征和局部特征的协同感知深度卷积网络。首先,我们划分对象的全局和局部,这意味着我们在一个对象中分割父和子。然后,构建了亲子联合检测网络。最后,通过协同检测实现对家长的精准定位和识别。该算法有效地解决了由于特征缺失而无法检测到目标的问题。我们还保证了子结构的父结构的准确性。实验结果表明,该算法的性能优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occlusion Object Detection via Collaborative Sensing Deep Convolution Network
Object detection is one of the important problems in computer vision. But external occlusion often cause object features missing which lead to a big challenge of object detection. Aim at the problem of occlusion object detection and try to describe object features more effectively; we proposed a collaborative sensing deep convolution network to achieve co-detection by global and partial features of objects. Firstly, we divide the global and partial of the object, it means we segment parent and child in an object. Then, the joint detection network of parent and child is constructed. Finally, through the collaborative detection we achieve the precise positioning and recognition about parents. The proposed algorithm effectively solves the problem that object can not be detected due to missing features. We also ensure the accuracy of parent construction by child. Experiment results demonstrate that our algorithm performs better than other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信