基于RANSAC和鲁棒特征值法的点云平面拟合

Liaomo Zheng, Ruiduan Wang, Shiyu Wang, Xinjun Liu, Shipei Guo
{"title":"基于RANSAC和鲁棒特征值法的点云平面拟合","authors":"Liaomo Zheng, Ruiduan Wang, Shiyu Wang, Xinjun Liu, Shipei Guo","doi":"10.1109/ICCC56324.2022.10065838","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of outliers and errors in the process of point cloud plane fitting, a point cloud plane fitting method combining random sampling consensus algorithm and an improved eigenvalue algorithm is proposed. The random sampling consensus algorithm is used to eliminate outliers, and the improved robust eigenvalue algorithm is used to fit the remaining effective points and calculate the plane parameters. The experimental results show that compared with the traditional eigenvalue method, least squares method and RANSAC algorithm, this method can improve the estimation accuracy of parameters, and is more suitable for fitting point cloud data with different outliers and errors. It is an ideal plane fitting method.","PeriodicalId":263098,"journal":{"name":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Point Cloud Plane Fitting Based on RANSAC and Robust Eigenvalue Method\",\"authors\":\"Liaomo Zheng, Ruiduan Wang, Shiyu Wang, Xinjun Liu, Shipei Guo\",\"doi\":\"10.1109/ICCC56324.2022.10065838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of outliers and errors in the process of point cloud plane fitting, a point cloud plane fitting method combining random sampling consensus algorithm and an improved eigenvalue algorithm is proposed. The random sampling consensus algorithm is used to eliminate outliers, and the improved robust eigenvalue algorithm is used to fit the remaining effective points and calculate the plane parameters. The experimental results show that compared with the traditional eigenvalue method, least squares method and RANSAC algorithm, this method can improve the estimation accuracy of parameters, and is more suitable for fitting point cloud data with different outliers and errors. It is an ideal plane fitting method.\",\"PeriodicalId\":263098,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC56324.2022.10065838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC56324.2022.10065838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对点云平面拟合过程中存在的异常值和误差问题,提出了一种结合随机抽样一致性算法和改进特征值算法的点云平面拟合方法。采用随机抽样一致性算法剔除离群点,采用改进的鲁棒特征值算法拟合剩余有效点并计算平面参数。实验结果表明,与传统的特征值法、最小二乘法和RANSAC算法相比,该方法可以提高参数的估计精度,更适合于具有不同离群值和误差的点云数据的拟合。这是一种理想的平面拟合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point Cloud Plane Fitting Based on RANSAC and Robust Eigenvalue Method
Aiming at the problem of outliers and errors in the process of point cloud plane fitting, a point cloud plane fitting method combining random sampling consensus algorithm and an improved eigenvalue algorithm is proposed. The random sampling consensus algorithm is used to eliminate outliers, and the improved robust eigenvalue algorithm is used to fit the remaining effective points and calculate the plane parameters. The experimental results show that compared with the traditional eigenvalue method, least squares method and RANSAC algorithm, this method can improve the estimation accuracy of parameters, and is more suitable for fitting point cloud data with different outliers and errors. It is an ideal plane fitting method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信