V. Pavlikov, V. Volosyuk, S. Zhyla, Nguyen Van Huu
{"title":"用于高空间分辨率成像的主动孔径合成雷达","authors":"V. Pavlikov, V. Volosyuk, S. Zhyla, Nguyen Van Huu","doi":"10.1109/UWBUSIS.2018.8520021","DOIUrl":null,"url":null,"abstract":"To solve problems of high-precision mapping of spatially extended objects regardless of weather conditions and time of day, radar imaging systems are used. The globality and efficiency of the survey is provided by the placement of radars on aerospace carriers. At the same time, there has been a proliferation of side-scan radars (providing a wide viewing range with a low spatial resolution) and antenna aperture synthesis radars (these provide high resolution in spatial coordinates, which depends on the type of survey). Radars used for imaging are classified according to various characteristics determining their advantages and disadvantages. Among such features, we can also distinguish the radar viewing area, which is currently limited to angles of 15° to 60° to the right and left of the observation in the nadir. The viewing range from -15° to + 15° from the nadir is characterized by a low resolution in range and traditionally is not visible by these radars (the socalled “blind zone”). In this regard, an alternative system for building radar images from aerospace carriers is proposed. It will provide imaging with high angular resolution of the viewing range from -15° to + 15° from the nadir. The main feature of the developed radar lies in the signal processing algorithm that combines methods of active (the presence of probing UWB signal) and passive (aperture synthesis) radiolocation. In addition, the radar implements a new method of “spectral aperture synthesis,” which allows the transition from processing of UWB signals with the continuum spectrum to processing multi-band signal processing.","PeriodicalId":167305,"journal":{"name":"2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Active Aperture Synthesis Radar for High Spatial Resolution Imaging\",\"authors\":\"V. Pavlikov, V. Volosyuk, S. Zhyla, Nguyen Van Huu\",\"doi\":\"10.1109/UWBUSIS.2018.8520021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve problems of high-precision mapping of spatially extended objects regardless of weather conditions and time of day, radar imaging systems are used. The globality and efficiency of the survey is provided by the placement of radars on aerospace carriers. At the same time, there has been a proliferation of side-scan radars (providing a wide viewing range with a low spatial resolution) and antenna aperture synthesis radars (these provide high resolution in spatial coordinates, which depends on the type of survey). Radars used for imaging are classified according to various characteristics determining their advantages and disadvantages. Among such features, we can also distinguish the radar viewing area, which is currently limited to angles of 15° to 60° to the right and left of the observation in the nadir. The viewing range from -15° to + 15° from the nadir is characterized by a low resolution in range and traditionally is not visible by these radars (the socalled “blind zone”). In this regard, an alternative system for building radar images from aerospace carriers is proposed. It will provide imaging with high angular resolution of the viewing range from -15° to + 15° from the nadir. The main feature of the developed radar lies in the signal processing algorithm that combines methods of active (the presence of probing UWB signal) and passive (aperture synthesis) radiolocation. In addition, the radar implements a new method of “spectral aperture synthesis,” which allows the transition from processing of UWB signals with the continuum spectrum to processing multi-band signal processing.\",\"PeriodicalId\":167305,\"journal\":{\"name\":\"2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UWBUSIS.2018.8520021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UWBUSIS.2018.8520021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active Aperture Synthesis Radar for High Spatial Resolution Imaging
To solve problems of high-precision mapping of spatially extended objects regardless of weather conditions and time of day, radar imaging systems are used. The globality and efficiency of the survey is provided by the placement of radars on aerospace carriers. At the same time, there has been a proliferation of side-scan radars (providing a wide viewing range with a low spatial resolution) and antenna aperture synthesis radars (these provide high resolution in spatial coordinates, which depends on the type of survey). Radars used for imaging are classified according to various characteristics determining their advantages and disadvantages. Among such features, we can also distinguish the radar viewing area, which is currently limited to angles of 15° to 60° to the right and left of the observation in the nadir. The viewing range from -15° to + 15° from the nadir is characterized by a low resolution in range and traditionally is not visible by these radars (the socalled “blind zone”). In this regard, an alternative system for building radar images from aerospace carriers is proposed. It will provide imaging with high angular resolution of the viewing range from -15° to + 15° from the nadir. The main feature of the developed radar lies in the signal processing algorithm that combines methods of active (the presence of probing UWB signal) and passive (aperture synthesis) radiolocation. In addition, the radar implements a new method of “spectral aperture synthesis,” which allows the transition from processing of UWB signals with the continuum spectrum to processing multi-band signal processing.