在电动汽车日益普及的情况下,火灾时电力系统的弹性

Daniel L. Donaldson, Manuel S. Alvarez‐Alvarado, D. Jayaweera
{"title":"在电动汽车日益普及的情况下,火灾时电力系统的弹性","authors":"Daniel L. Donaldson, Manuel S. Alvarez‐Alvarado, D. Jayaweera","doi":"10.1109/PMAPS47429.2020.9183683","DOIUrl":null,"url":null,"abstract":"Rising electric vehicle (EV) adoption is introducing new challenges to the operation and planning of the electric grid. Currently power system planners perform analysis to ensure adequate levels of reliability following contingencies such as loss of a substation. However, existing planning standards do not explicitly mandate studies of the redistribution of EV charging demand that would take place in the case of extreme events. Planning to serve the charging demand from EVs during extreme events is paramount to ensure the resiliency of the grid. This paper presents a novel framework for power system planners to reflect the impact of EV evacuations on grid resiliency during wildfire events. The method consists of resiliency analysis coupled with probabilistic models of load redistribution taking into account potential evacuation routes. A case study using the 2019 update to the IEEE 24 bus Reliability Test System (RTS) is performed to demonstrate the efficacy of the proposed strategy. The framework results in a more specific resiliency trapezoid that reflects a more realistic resiliency behaviour of the system.","PeriodicalId":126918,"journal":{"name":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Power System Resiliency During Wildfires Under Increasing Penetration of Electric Vehicles\",\"authors\":\"Daniel L. Donaldson, Manuel S. Alvarez‐Alvarado, D. Jayaweera\",\"doi\":\"10.1109/PMAPS47429.2020.9183683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rising electric vehicle (EV) adoption is introducing new challenges to the operation and planning of the electric grid. Currently power system planners perform analysis to ensure adequate levels of reliability following contingencies such as loss of a substation. However, existing planning standards do not explicitly mandate studies of the redistribution of EV charging demand that would take place in the case of extreme events. Planning to serve the charging demand from EVs during extreme events is paramount to ensure the resiliency of the grid. This paper presents a novel framework for power system planners to reflect the impact of EV evacuations on grid resiliency during wildfire events. The method consists of resiliency analysis coupled with probabilistic models of load redistribution taking into account potential evacuation routes. A case study using the 2019 update to the IEEE 24 bus Reliability Test System (RTS) is performed to demonstrate the efficacy of the proposed strategy. The framework results in a more specific resiliency trapezoid that reflects a more realistic resiliency behaviour of the system.\",\"PeriodicalId\":126918,\"journal\":{\"name\":\"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMAPS47429.2020.9183683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS47429.2020.9183683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

电动汽车(EV)的普及给电网的运营和规划带来了新的挑战。目前,电力系统规划者进行分析,以确保在突发事件(如变电站的损失)发生后的足够水平的可靠性。然而,现有的规划标准并没有明确要求对极端事件下电动汽车充电需求的重新分配进行研究。规划在极端事件期间满足电动汽车的充电需求对于确保电网的弹性至关重要。本文为电力系统规划者提供了一个新的框架,以反映在野火事件中电动汽车疏散对电网弹性的影响。该方法包括弹性分析和考虑潜在疏散路线的负荷再分配概率模型。使用2019年更新的IEEE 24总线可靠性测试系统(RTS)进行了案例研究,以证明所提出策略的有效性。该框架产生了一个更具体的弹性梯形,反映了系统更现实的弹性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power System Resiliency During Wildfires Under Increasing Penetration of Electric Vehicles
Rising electric vehicle (EV) adoption is introducing new challenges to the operation and planning of the electric grid. Currently power system planners perform analysis to ensure adequate levels of reliability following contingencies such as loss of a substation. However, existing planning standards do not explicitly mandate studies of the redistribution of EV charging demand that would take place in the case of extreme events. Planning to serve the charging demand from EVs during extreme events is paramount to ensure the resiliency of the grid. This paper presents a novel framework for power system planners to reflect the impact of EV evacuations on grid resiliency during wildfire events. The method consists of resiliency analysis coupled with probabilistic models of load redistribution taking into account potential evacuation routes. A case study using the 2019 update to the IEEE 24 bus Reliability Test System (RTS) is performed to demonstrate the efficacy of the proposed strategy. The framework results in a more specific resiliency trapezoid that reflects a more realistic resiliency behaviour of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信