基于标量的二元亚波长衍射透镜设计

J. Mait, D. Prather, M. Mirotznik
{"title":"基于标量的二元亚波长衍射透镜设计","authors":"J. Mait, D. Prather, M. Mirotznik","doi":"10.1364/domo.1998.dtub.3","DOIUrl":null,"url":null,"abstract":"Recent research1–9 has shown that if a binary-phase diffractive optical element (DOE) has features that are on the order of the illuminating wavelength, the performance limits set by scalar-based diffraction theory can be overcome. In fact, diffraction efficiencies in excess of 90% have been predicted for binary gratings that have subwavelength features.1,4,5 Due primarily to the availability of tools for modeling, the analysis and design of subwavelength DOEs (SWDOEs) has concentrated primarily on gratings.1-7,10 To overcome this limitation, we have developed numerical routines that use a boundary element method (BEM) to analyze diffraction from finite extent, aperiodic DOEs.11 In this paper we consider diffractive design, in particular, the design of diffractive lenses, subject to the constraints of fabrication.","PeriodicalId":301804,"journal":{"name":"Diffractive Optics and Micro-Optics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalar-Based Design of Binary Subwavelength Diffractive Lenses\",\"authors\":\"J. Mait, D. Prather, M. Mirotznik\",\"doi\":\"10.1364/domo.1998.dtub.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research1–9 has shown that if a binary-phase diffractive optical element (DOE) has features that are on the order of the illuminating wavelength, the performance limits set by scalar-based diffraction theory can be overcome. In fact, diffraction efficiencies in excess of 90% have been predicted for binary gratings that have subwavelength features.1,4,5 Due primarily to the availability of tools for modeling, the analysis and design of subwavelength DOEs (SWDOEs) has concentrated primarily on gratings.1-7,10 To overcome this limitation, we have developed numerical routines that use a boundary element method (BEM) to analyze diffraction from finite extent, aperiodic DOEs.11 In this paper we consider diffractive design, in particular, the design of diffractive lenses, subject to the constraints of fabrication.\",\"PeriodicalId\":301804,\"journal\":{\"name\":\"Diffractive Optics and Micro-Optics\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffractive Optics and Micro-Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/domo.1998.dtub.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffractive Optics and Micro-Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/domo.1998.dtub.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究1 - 9表明,如果双相衍射光学元件(DOE)具有在照明波长数量级上的特征,则可以克服基于标量衍射理论设定的性能限制。事实上,对于具有亚波长特征的二元光栅,衍射效率已被预测超过90%。1,4,5主要由于建模工具的可用性,亚波长do (swdo)的分析和设计主要集中在光栅上。为了克服这一限制,我们开发了使用边界元法(BEM)的数值例程,从有限范围、非周期的角度分析衍射在本文中,我们考虑衍射设计,特别是衍射透镜的设计,受到制造的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalar-Based Design of Binary Subwavelength Diffractive Lenses
Recent research1–9 has shown that if a binary-phase diffractive optical element (DOE) has features that are on the order of the illuminating wavelength, the performance limits set by scalar-based diffraction theory can be overcome. In fact, diffraction efficiencies in excess of 90% have been predicted for binary gratings that have subwavelength features.1,4,5 Due primarily to the availability of tools for modeling, the analysis and design of subwavelength DOEs (SWDOEs) has concentrated primarily on gratings.1-7,10 To overcome this limitation, we have developed numerical routines that use a boundary element method (BEM) to analyze diffraction from finite extent, aperiodic DOEs.11 In this paper we consider diffractive design, in particular, the design of diffractive lenses, subject to the constraints of fabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信