NSGA-II和OMOPSO多目标算法的实验比较

Adriana Cortes Godinez, Luis Ernesto Mancilla Espinosa, E. M. Montes
{"title":"NSGA-II和OMOPSO多目标算法的实验比较","authors":"Adriana Cortes Godinez, Luis Ernesto Mancilla Espinosa, E. M. Montes","doi":"10.1109/CERMA.2010.13","DOIUrl":null,"url":null,"abstract":"The optimization of multi objective problems is currently an area of important research and development. The importance of type of problems has allowed the development of multiple metaheuristics for their solution. To determine which multi objective metaheuristic has the best performance with respect to a problem, in this article an experimental comparison between two of them: Sorting Genetic Algorithm No dominated-II (NSGA-II) and Multi Objective Particle Swarm Optimization (MOPS) using ZDT test functions is made. The results obtained by both algorithms are compared and analyzed based on different performance metrics that evaluate both the dispersion of the solutions on the Pareto front, and its proximity to it.","PeriodicalId":119218,"journal":{"name":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"An Experimental Comparison of Multiobjective Algorithms: NSGA-II and OMOPSO\",\"authors\":\"Adriana Cortes Godinez, Luis Ernesto Mancilla Espinosa, E. M. Montes\",\"doi\":\"10.1109/CERMA.2010.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimization of multi objective problems is currently an area of important research and development. The importance of type of problems has allowed the development of multiple metaheuristics for their solution. To determine which multi objective metaheuristic has the best performance with respect to a problem, in this article an experimental comparison between two of them: Sorting Genetic Algorithm No dominated-II (NSGA-II) and Multi Objective Particle Swarm Optimization (MOPS) using ZDT test functions is made. The results obtained by both algorithms are compared and analyzed based on different performance metrics that evaluate both the dispersion of the solutions on the Pareto front, and its proximity to it.\",\"PeriodicalId\":119218,\"journal\":{\"name\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2010.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2010.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

多目标问题的优化是当前一个重要的研究和发展领域。问题类型的重要性允许开发多种元启发式解决方案。为了确定哪一种多目标元启发式算法在某一问题上的性能最好,本文利用ZDT测试函数对两种多目标元启发式算法进行了实验比较:排序遗传算法No dominant - ii (NSGA-II)和多目标粒子群优化(MOPS)。基于不同的性能指标,对两种算法得到的结果进行了比较和分析,这些性能指标评估了解在Pareto前沿的离散性及其接近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Comparison of Multiobjective Algorithms: NSGA-II and OMOPSO
The optimization of multi objective problems is currently an area of important research and development. The importance of type of problems has allowed the development of multiple metaheuristics for their solution. To determine which multi objective metaheuristic has the best performance with respect to a problem, in this article an experimental comparison between two of them: Sorting Genetic Algorithm No dominated-II (NSGA-II) and Multi Objective Particle Swarm Optimization (MOPS) using ZDT test functions is made. The results obtained by both algorithms are compared and analyzed based on different performance metrics that evaluate both the dispersion of the solutions on the Pareto front, and its proximity to it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信