基于深度金字塔特征的异常检测的斑块密度估计

XiaoYan Wang, Daping Li, Wanghui Bu
{"title":"基于深度金字塔特征的异常检测的斑块密度估计","authors":"XiaoYan Wang, Daping Li, Wanghui Bu","doi":"10.1109/CAC57257.2022.10056091","DOIUrl":null,"url":null,"abstract":"Anomaly detection and localization are critical in modern manufacturing for the quality control of products. A particular challenge is that the collecting and labeling of anomaly examples are usually infeasible before implementation. To tackle the problem, a novel two-stage framework is proposed in this paper to build anomaly estimators with normal data only. Specifically, unsupervised deep representations are learned first by a modified SimSiam where an adaptation for one-class learning is implemented. Then the non-parametric method is adopted to model the distribution of training data on the learned representations as the one-class classifier to detect anomaly. Moreover, we model the distribution with different hierarchy level’s features of the convolutional neural network to achieve both image-level and pixel-level detections. Experiments are conducted on MVTec anomaly detection dataset. Competitive results of 92.6% AUROC score for image-level detection and 95.4% for pixel-level detection are obtained to demonstrate the effectiveness of the proposed method.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patch Density Estimation for Anomaly Detection with Deep Pyramid Features\",\"authors\":\"XiaoYan Wang, Daping Li, Wanghui Bu\",\"doi\":\"10.1109/CAC57257.2022.10056091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection and localization are critical in modern manufacturing for the quality control of products. A particular challenge is that the collecting and labeling of anomaly examples are usually infeasible before implementation. To tackle the problem, a novel two-stage framework is proposed in this paper to build anomaly estimators with normal data only. Specifically, unsupervised deep representations are learned first by a modified SimSiam where an adaptation for one-class learning is implemented. Then the non-parametric method is adopted to model the distribution of training data on the learned representations as the one-class classifier to detect anomaly. Moreover, we model the distribution with different hierarchy level’s features of the convolutional neural network to achieve both image-level and pixel-level detections. Experiments are conducted on MVTec anomaly detection dataset. Competitive results of 92.6% AUROC score for image-level detection and 95.4% for pixel-level detection are obtained to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":287137,\"journal\":{\"name\":\"2022 China Automation Congress (CAC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 China Automation Congress (CAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAC57257.2022.10056091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10056091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代制造业中,异常检测和定位是产品质量控制的关键。一个特别的挑战是,异常示例的收集和标记通常在实现之前是不可行的。为了解决这一问题,本文提出了一种新的两阶段框架,仅用正常数据构建异常估计器。具体来说,无监督深度表示首先是通过改进的SimSiam学习的,其中实现了对单类学习的适应。然后采用非参数方法对训练数据在学习到的表示上的分布进行建模,作为单类分类器进行异常检测。此外,我们利用卷积神经网络的不同层次特征对分布进行建模,实现图像级和像素级检测。在MVTec异常检测数据集上进行了实验。图像级检测的AUROC得分为92.6%,像素级检测的AUROC得分为95.4%,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patch Density Estimation for Anomaly Detection with Deep Pyramid Features
Anomaly detection and localization are critical in modern manufacturing for the quality control of products. A particular challenge is that the collecting and labeling of anomaly examples are usually infeasible before implementation. To tackle the problem, a novel two-stage framework is proposed in this paper to build anomaly estimators with normal data only. Specifically, unsupervised deep representations are learned first by a modified SimSiam where an adaptation for one-class learning is implemented. Then the non-parametric method is adopted to model the distribution of training data on the learned representations as the one-class classifier to detect anomaly. Moreover, we model the distribution with different hierarchy level’s features of the convolutional neural network to achieve both image-level and pixel-level detections. Experiments are conducted on MVTec anomaly detection dataset. Competitive results of 92.6% AUROC score for image-level detection and 95.4% for pixel-level detection are obtained to demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信