MANTIS:使用深度强化学习的多类型和属性索引选择

V. Sharma, C. Dyreson, N. Flann
{"title":"MANTIS:使用深度强化学习的多类型和属性索引选择","authors":"V. Sharma, C. Dyreson, N. Flann","doi":"10.1145/3472163.3472176","DOIUrl":null,"url":null,"abstract":"DBMS performance is dependent on many parameters, such as index selection, cache size, physical layout, and data partitioning. Some combinations of these parameters can lead to optimal performance for a given workload but selecting an optimal or near-optimal combination is challenging, especially for large databases with complex workloads. Among the hundreds of parameters, index selection is arguably the most critical parameter for performance. We propose a self-administered framework, called the Multiple Type and Attribute Index Selector (MANTIS), that automatically selects near-optimal indexes. The framework advances the state-of-the-art index selection by considering both multi-attribute and multiple types of indexes within a bounded storage size constraint, a combination not previously addressed. MANTIS combines supervised and reinforcement learning, a Deep Neural Network recommends the type of index for a given workload while a Deep Q-Learning network recommends the multi-attribute aspect. MANTIS is sensitive to storage cost constraints and incorporates noisy rewards in its reward function for better performance. Our experimental evaluation shows that MANTIS outperforms the current state-of-art methods by an average of 9.53% QphH@size.","PeriodicalId":242683,"journal":{"name":"Proceedings of the 25th International Database Engineering & Applications Symposium","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"MANTIS: Multiple Type and Attribute Index Selection using Deep Reinforcement Learning\",\"authors\":\"V. Sharma, C. Dyreson, N. Flann\",\"doi\":\"10.1145/3472163.3472176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DBMS performance is dependent on many parameters, such as index selection, cache size, physical layout, and data partitioning. Some combinations of these parameters can lead to optimal performance for a given workload but selecting an optimal or near-optimal combination is challenging, especially for large databases with complex workloads. Among the hundreds of parameters, index selection is arguably the most critical parameter for performance. We propose a self-administered framework, called the Multiple Type and Attribute Index Selector (MANTIS), that automatically selects near-optimal indexes. The framework advances the state-of-the-art index selection by considering both multi-attribute and multiple types of indexes within a bounded storage size constraint, a combination not previously addressed. MANTIS combines supervised and reinforcement learning, a Deep Neural Network recommends the type of index for a given workload while a Deep Q-Learning network recommends the multi-attribute aspect. MANTIS is sensitive to storage cost constraints and incorporates noisy rewards in its reward function for better performance. Our experimental evaluation shows that MANTIS outperforms the current state-of-art methods by an average of 9.53% QphH@size.\",\"PeriodicalId\":242683,\"journal\":{\"name\":\"Proceedings of the 25th International Database Engineering & Applications Symposium\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Database Engineering & Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3472163.3472176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Database Engineering & Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472163.3472176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

DBMS的性能取决于许多参数,例如索引选择、缓存大小、物理布局和数据分区。这些参数的某些组合可以为给定的工作负载带来最优的性能,但是选择最优或接近最优的组合是具有挑战性的,特别是对于具有复杂工作负载的大型数据库。在数百个参数中,索引选择可以说是影响性能的最关键参数。我们提出了一个自我管理的框架,称为多类型和属性索引选择器(MANTIS),它自动选择接近最优的索引。该框架通过在有限的存储大小约束内考虑多属性和多种类型的索引来推进最先进的索引选择,这是以前没有解决的组合。MANTIS结合了监督学习和强化学习,深度神经网络为给定的工作负载推荐索引类型,而深度Q-Learning网络则推荐多属性方面。MANTIS对存储成本约束非常敏感,并在其奖励函数中加入了噪声奖励以获得更好的性能。我们的实验评估表明,MANTIS比目前最先进的方法平均高出9.53% QphH@size。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MANTIS: Multiple Type and Attribute Index Selection using Deep Reinforcement Learning
DBMS performance is dependent on many parameters, such as index selection, cache size, physical layout, and data partitioning. Some combinations of these parameters can lead to optimal performance for a given workload but selecting an optimal or near-optimal combination is challenging, especially for large databases with complex workloads. Among the hundreds of parameters, index selection is arguably the most critical parameter for performance. We propose a self-administered framework, called the Multiple Type and Attribute Index Selector (MANTIS), that automatically selects near-optimal indexes. The framework advances the state-of-the-art index selection by considering both multi-attribute and multiple types of indexes within a bounded storage size constraint, a combination not previously addressed. MANTIS combines supervised and reinforcement learning, a Deep Neural Network recommends the type of index for a given workload while a Deep Q-Learning network recommends the multi-attribute aspect. MANTIS is sensitive to storage cost constraints and incorporates noisy rewards in its reward function for better performance. Our experimental evaluation shows that MANTIS outperforms the current state-of-art methods by an average of 9.53% QphH@size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信