交互式API搜索的对话管理

Zachary Eberhart, Collin McMillan
{"title":"交互式API搜索的对话管理","authors":"Zachary Eberhart, Collin McMillan","doi":"10.26226/morressier.613b5418842293c031b5b5e8","DOIUrl":null,"url":null,"abstract":"API search involves finding components in an API that are relevant to a programming task. For example, a programmer may need a function in a C library that opens a new network connection, then another function that sends data across that connection. Unfortunately, programmers often have trouble finding the API components that they need. A strong scientific consensus is emerging towards developing interactive tool support that responds to conversational feedback, emulating the experience of asking a fellow human programmer for help. A major barrier to creating these interactive tools is implementing dialogue management for API search. Dialogue management involves determining how a system should respond to user input, such as whether to ask a clarification question or to display potential results. In this paper, we present a dialogue manager for interactive API search that considers search results and dialogue history to select efficient actions. We implement two dialogue policies: a hand-crafted policy and a policy optimized via reinforcement learning. We perform a synthetics evaluation and a human evaluation comparing the policies to a generic single-turn, top-N policy used by source code search engines.","PeriodicalId":205629,"journal":{"name":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dialogue Management for Interactive API Search\",\"authors\":\"Zachary Eberhart, Collin McMillan\",\"doi\":\"10.26226/morressier.613b5418842293c031b5b5e8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"API search involves finding components in an API that are relevant to a programming task. For example, a programmer may need a function in a C library that opens a new network connection, then another function that sends data across that connection. Unfortunately, programmers often have trouble finding the API components that they need. A strong scientific consensus is emerging towards developing interactive tool support that responds to conversational feedback, emulating the experience of asking a fellow human programmer for help. A major barrier to creating these interactive tools is implementing dialogue management for API search. Dialogue management involves determining how a system should respond to user input, such as whether to ask a clarification question or to display potential results. In this paper, we present a dialogue manager for interactive API search that considers search results and dialogue history to select efficient actions. We implement two dialogue policies: a hand-crafted policy and a policy optimized via reinforcement learning. We perform a synthetics evaluation and a human evaluation comparing the policies to a generic single-turn, top-N policy used by source code search engines.\",\"PeriodicalId\":205629,\"journal\":{\"name\":\"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26226/morressier.613b5418842293c031b5b5e8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26226/morressier.613b5418842293c031b5b5e8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

API搜索涉及在API中查找与编程任务相关的组件。例如,程序员可能需要C库中的一个函数打开一个新的网络连接,然后需要另一个函数通过该连接发送数据。不幸的是,程序员经常很难找到他们需要的API组件。一种强有力的科学共识正在形成,即开发响应会话反馈的交互式工具支持,模拟向人类程序员同伴寻求帮助的体验。创建这些交互式工具的一个主要障碍是实现API搜索的对话管理。对话管理涉及确定系统应如何响应用户输入,例如是否询问澄清问题或显示潜在结果。在本文中,我们提出了一个交互式API搜索的对话管理器,它考虑搜索结果和对话历史来选择有效的操作。我们实现了两个对话策略:一个手工制作的策略和一个通过强化学习优化的策略。我们执行综合评估和人工评估,将策略与源代码搜索引擎使用的通用单轮top-N策略进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dialogue Management for Interactive API Search
API search involves finding components in an API that are relevant to a programming task. For example, a programmer may need a function in a C library that opens a new network connection, then another function that sends data across that connection. Unfortunately, programmers often have trouble finding the API components that they need. A strong scientific consensus is emerging towards developing interactive tool support that responds to conversational feedback, emulating the experience of asking a fellow human programmer for help. A major barrier to creating these interactive tools is implementing dialogue management for API search. Dialogue management involves determining how a system should respond to user input, such as whether to ask a clarification question or to display potential results. In this paper, we present a dialogue manager for interactive API search that considers search results and dialogue history to select efficient actions. We implement two dialogue policies: a hand-crafted policy and a policy optimized via reinforcement learning. We perform a synthetics evaluation and a human evaluation comparing the policies to a generic single-turn, top-N policy used by source code search engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信