横幅:具有复制秘密共享的二值化神经网络

Alberto Ibarrondo, H. Chabanne, Melek Önen
{"title":"横幅:具有复制秘密共享的二值化神经网络","authors":"Alberto Ibarrondo, H. Chabanne, Melek Önen","doi":"10.1145/3437880.3460394","DOIUrl":null,"url":null,"abstract":"Binarized Neural Networks (BNN) provide efficient implementations of Convolutional Neural Networks (CNN). This makes them particularly suitable to perform fast and memory-light inference of neural networks running on resource-constrained devices. Motivated by the growing interest in CNN-based biometric recognition on potentially insecure devices, or as part of strong multi-factor authentication for sensitive applications, the protection of BNN inference on edge devices is rendered imperative. We propose a new method to perform secure inference of BNN relying on secure multiparty computation. While preceding papers offered security in a semi-honest setting for BNN or malicious security for standard CNN, our work yields security with abort against one malicious adversary for BNN by leveraging on Replicated Secret Sharing (RSS) for an honest majority with three computing parties. Experimentally, we implement Banners on top of MP-SPDZ and compare it with prior work over binarized models trained for MNIST and CIFAR10 image classification datasets. Our results attest the efficiency of Banners as a privacy-preserving inference technique.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Banners: Binarized Neural Networks with Replicated Secret Sharing\",\"authors\":\"Alberto Ibarrondo, H. Chabanne, Melek Önen\",\"doi\":\"10.1145/3437880.3460394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binarized Neural Networks (BNN) provide efficient implementations of Convolutional Neural Networks (CNN). This makes them particularly suitable to perform fast and memory-light inference of neural networks running on resource-constrained devices. Motivated by the growing interest in CNN-based biometric recognition on potentially insecure devices, or as part of strong multi-factor authentication for sensitive applications, the protection of BNN inference on edge devices is rendered imperative. We propose a new method to perform secure inference of BNN relying on secure multiparty computation. While preceding papers offered security in a semi-honest setting for BNN or malicious security for standard CNN, our work yields security with abort against one malicious adversary for BNN by leveraging on Replicated Secret Sharing (RSS) for an honest majority with three computing parties. Experimentally, we implement Banners on top of MP-SPDZ and compare it with prior work over binarized models trained for MNIST and CIFAR10 image classification datasets. Our results attest the efficiency of Banners as a privacy-preserving inference technique.\",\"PeriodicalId\":120300,\"journal\":{\"name\":\"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437880.3460394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

二值化神经网络(BNN)是卷积神经网络(CNN)的有效实现。这使得它们特别适合在资源受限的设备上执行快速和内存轻推理的神经网络。由于人们对潜在不安全设备上基于cnn的生物识别越来越感兴趣,或者作为敏感应用的强多因素认证的一部分,边缘设备上BNN推理的保护变得势在必行。提出了一种基于安全多方计算的BNN安全推理方法。虽然之前的论文为BNN提供了半诚实设置的安全性,或为标准CNN提供了恶意安全性,但我们的工作通过利用复制秘密共享(RSS)为具有三个计算方的诚实多数提供了针对BNN恶意对手的中断安全性。实验中,我们在MP-SPDZ上实现了banner,并将其与之前针对MNIST和CIFAR10图像分类数据集训练的二值化模型进行了比较。我们的结果证明了横幅作为一种隐私保护推理技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Banners: Binarized Neural Networks with Replicated Secret Sharing
Binarized Neural Networks (BNN) provide efficient implementations of Convolutional Neural Networks (CNN). This makes them particularly suitable to perform fast and memory-light inference of neural networks running on resource-constrained devices. Motivated by the growing interest in CNN-based biometric recognition on potentially insecure devices, or as part of strong multi-factor authentication for sensitive applications, the protection of BNN inference on edge devices is rendered imperative. We propose a new method to perform secure inference of BNN relying on secure multiparty computation. While preceding papers offered security in a semi-honest setting for BNN or malicious security for standard CNN, our work yields security with abort against one malicious adversary for BNN by leveraging on Replicated Secret Sharing (RSS) for an honest majority with three computing parties. Experimentally, we implement Banners on top of MP-SPDZ and compare it with prior work over binarized models trained for MNIST and CIFAR10 image classification datasets. Our results attest the efficiency of Banners as a privacy-preserving inference technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信