巴门达地区气候变化的标准化降水指数评估

Suiven John Paul Tume
{"title":"巴门达地区气候变化的标准化降水指数评估","authors":"Suiven John Paul Tume","doi":"10.31038/gems.2022414","DOIUrl":null,"url":null,"abstract":"Rainfall events across the earth’s surface, for varied reasons, are unevenly distributed. Such variation is reflective of the availability of water for human use and the cycles of activities like agriculture [1]. In this era of global environmental changes, a sound knowledge of the climate of human-populated territories is indispensable, considering the current phenomenon of climate change [2]. Rainfall variability, which refers to changes in the amount of rain received in a specified geographic space within a defined period, can be daily, monthly, seasonal or annual. Precipitation change averaged over global land areas is low before 1951 and medium afterwards because of insufficient data, particularly in the earlier periods of the records [3]. The long-term mean rainfall for a month, season or year does not often indicate the regularity with which given amounts of rainfall can be expected, especially in the low latitudes where rainfall is known to be highly variable in its incidence from one year to another [1]. In the tropics, rainfall tends to be more variable seasonally than annually. Rainfall variability is a measure of the degree of likelihood that the mean amount of rainfall may be repeated each year, season or month depending on the period under consideration [4-6]. The paper bridges some methodological gaps in previous studies on climate variability in Cameroon. Ngakfumbe [7] analysed rainfall probability and reliability over Cameroon, using Standard Deviation (SD) and Coefficient of Variation (CV), with no other climatic index. Molua and Lambi [8] made a descriptive analysis of rainfall variability and its impact on water resources over Cameroon, to note that mean annual rainfall decreases inversely to latitude, without specifying the indices that show regional variations. Tume [9-11] assessed the susceptibility of water resources to climate variability on the Bui Plateau, using the Rainfall Seasonality Research Article","PeriodicalId":110596,"journal":{"name":"Geology, Earth & Marine Sciences","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Standardized Precipitation Index Valuation of Climate Change in Bamenda\",\"authors\":\"Suiven John Paul Tume\",\"doi\":\"10.31038/gems.2022414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall events across the earth’s surface, for varied reasons, are unevenly distributed. Such variation is reflective of the availability of water for human use and the cycles of activities like agriculture [1]. In this era of global environmental changes, a sound knowledge of the climate of human-populated territories is indispensable, considering the current phenomenon of climate change [2]. Rainfall variability, which refers to changes in the amount of rain received in a specified geographic space within a defined period, can be daily, monthly, seasonal or annual. Precipitation change averaged over global land areas is low before 1951 and medium afterwards because of insufficient data, particularly in the earlier periods of the records [3]. The long-term mean rainfall for a month, season or year does not often indicate the regularity with which given amounts of rainfall can be expected, especially in the low latitudes where rainfall is known to be highly variable in its incidence from one year to another [1]. In the tropics, rainfall tends to be more variable seasonally than annually. Rainfall variability is a measure of the degree of likelihood that the mean amount of rainfall may be repeated each year, season or month depending on the period under consideration [4-6]. The paper bridges some methodological gaps in previous studies on climate variability in Cameroon. Ngakfumbe [7] analysed rainfall probability and reliability over Cameroon, using Standard Deviation (SD) and Coefficient of Variation (CV), with no other climatic index. Molua and Lambi [8] made a descriptive analysis of rainfall variability and its impact on water resources over Cameroon, to note that mean annual rainfall decreases inversely to latitude, without specifying the indices that show regional variations. Tume [9-11] assessed the susceptibility of water resources to climate variability on the Bui Plateau, using the Rainfall Seasonality Research Article\",\"PeriodicalId\":110596,\"journal\":{\"name\":\"Geology, Earth & Marine Sciences\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology, Earth & Marine Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31038/gems.2022414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology, Earth & Marine Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31038/gems.2022414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于各种原因,地球表面的降雨事件分布不均匀。这种变化反映了人类用水的可得性和农业等活动的周期[1]。在这个全球环境变化的时代,考虑到当前的气候变化现象,对人类居住地区的气候有一个良好的了解是必不可少的[2]。降雨变率是指特定地理空间在特定时期内的降雨量变化,可以是日、月、季或年。由于数据不足,特别是在记录的早期,1951年之前全球陆地平均降水变化很小,1951年之后中等[3]。一个月、一个季节或一年的长期平均降雨量通常不能表明预期给定降雨量的规律性,特别是在低纬度地区,那里的降雨量在一年到另一年之间变化很大[1]。在热带地区,降雨的季节变化往往比年变化更大。降雨变率是对每年、季节或每月平均降雨量根据所考虑的时期重复的可能性程度的度量[4-6]。这篇论文弥补了以前关于喀麦隆气候变率的研究在方法上的一些空白。Ngakfumbe[7]在没有其他气候指标的情况下,利用标准差(SD)和变异系数(CV)分析了喀麦隆的降雨概率和可靠性。Molua和Lambi[8]对喀麦隆的降雨变率及其对水资源的影响进行了描述性分析,指出年平均降雨量与纬度成反比,但没有具体说明显示区域变化的指标。Tume[9-11]利用降雨季节性研究文章评估了布维高原水资源对气候变率的敏感性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standardized Precipitation Index Valuation of Climate Change in Bamenda
Rainfall events across the earth’s surface, for varied reasons, are unevenly distributed. Such variation is reflective of the availability of water for human use and the cycles of activities like agriculture [1]. In this era of global environmental changes, a sound knowledge of the climate of human-populated territories is indispensable, considering the current phenomenon of climate change [2]. Rainfall variability, which refers to changes in the amount of rain received in a specified geographic space within a defined period, can be daily, monthly, seasonal or annual. Precipitation change averaged over global land areas is low before 1951 and medium afterwards because of insufficient data, particularly in the earlier periods of the records [3]. The long-term mean rainfall for a month, season or year does not often indicate the regularity with which given amounts of rainfall can be expected, especially in the low latitudes where rainfall is known to be highly variable in its incidence from one year to another [1]. In the tropics, rainfall tends to be more variable seasonally than annually. Rainfall variability is a measure of the degree of likelihood that the mean amount of rainfall may be repeated each year, season or month depending on the period under consideration [4-6]. The paper bridges some methodological gaps in previous studies on climate variability in Cameroon. Ngakfumbe [7] analysed rainfall probability and reliability over Cameroon, using Standard Deviation (SD) and Coefficient of Variation (CV), with no other climatic index. Molua and Lambi [8] made a descriptive analysis of rainfall variability and its impact on water resources over Cameroon, to note that mean annual rainfall decreases inversely to latitude, without specifying the indices that show regional variations. Tume [9-11] assessed the susceptibility of water resources to climate variability on the Bui Plateau, using the Rainfall Seasonality Research Article
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信