建模误差对二阶延迟过程模型性能的影响

Jagriti Uniyal, Monalisa Joshi, P. Juneja
{"title":"建模误差对二阶延迟过程模型性能的影响","authors":"Jagriti Uniyal, Monalisa Joshi, P. Juneja","doi":"10.1109/ETCT.2016.7882926","DOIUrl":null,"url":null,"abstract":"In a process industry it is desirable to have robust controller so that required response is obtained even in the presence of disturbances. In this paper, SOPDT model is considered and PID controller is designed for it. Robustness of PID controller is checked by perturbation of model parameters. Model parameters K (gain), τ1, τ2 (time constants) are perturbed by 15% and response obtained for perturbed system is compared with that of original system.","PeriodicalId":340007,"journal":{"name":"2016 International Conference on Emerging Trends in Communication Technologies (ETCT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling error effect on performance of a second order delayed process model\",\"authors\":\"Jagriti Uniyal, Monalisa Joshi, P. Juneja\",\"doi\":\"10.1109/ETCT.2016.7882926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a process industry it is desirable to have robust controller so that required response is obtained even in the presence of disturbances. In this paper, SOPDT model is considered and PID controller is designed for it. Robustness of PID controller is checked by perturbation of model parameters. Model parameters K (gain), τ1, τ2 (time constants) are perturbed by 15% and response obtained for perturbed system is compared with that of original system.\",\"PeriodicalId\":340007,\"journal\":{\"name\":\"2016 International Conference on Emerging Trends in Communication Technologies (ETCT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Emerging Trends in Communication Technologies (ETCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCT.2016.7882926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Emerging Trends in Communication Technologies (ETCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCT.2016.7882926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过程工业中,需要有鲁棒控制器,以便即使在存在干扰的情况下也能获得所需的响应。本文考虑SOPDT模型,并针对其设计了PID控制器。通过模型参数的摄动来检验PID控制器的鲁棒性。对模型参数K(增益)、τ1、τ2(时间常数)进行了15%的扰动,并将扰动后系统的响应与原系统的响应进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling error effect on performance of a second order delayed process model
In a process industry it is desirable to have robust controller so that required response is obtained even in the presence of disturbances. In this paper, SOPDT model is considered and PID controller is designed for it. Robustness of PID controller is checked by perturbation of model parameters. Model parameters K (gain), τ1, τ2 (time constants) are perturbed by 15% and response obtained for perturbed system is compared with that of original system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信