基于自动微分梯度算法的微电网规模优化

Evelise de Godoy Antunes, Pierre Haessig, Chaoyu Wang, R. Leborgne
{"title":"基于自动微分梯度算法的微电网规模优化","authors":"Evelise de Godoy Antunes, Pierre Haessig, Chaoyu Wang, R. Leborgne","doi":"10.1109/ISGT-Europe54678.2022.9960498","DOIUrl":null,"url":null,"abstract":"Microgrid sizing optimization is often formulated as a black-box optimization problem. This allows modeling the microgrid with a realistic temporal simulation of the energy flows between components. Such models are usually optimized with gradient-free methods, because no analytical expression for gradient is available. However, the development of new Automatic Differentiation (AD) packages allows the efficient and exact computation of the gradient of black-box models. Thus, this work proposes to solve the optimal microgrid sizing using gradient-based algorithms with AD packages. However, physical realism of the model makes the objective function discontinuous which hinders the optimization convergence. After an appropriate smoothing, the objective is still nonconvex, but convergence is achieved for more that 90 % of the starting points. This suggest that a multi-start gradient-based algorithm can improve the state-of-the-art sizing methodologies.","PeriodicalId":311595,"journal":{"name":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Microgrid Sizing using Gradient-based Algorithms with Automatic Differentiation\",\"authors\":\"Evelise de Godoy Antunes, Pierre Haessig, Chaoyu Wang, R. Leborgne\",\"doi\":\"10.1109/ISGT-Europe54678.2022.9960498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microgrid sizing optimization is often formulated as a black-box optimization problem. This allows modeling the microgrid with a realistic temporal simulation of the energy flows between components. Such models are usually optimized with gradient-free methods, because no analytical expression for gradient is available. However, the development of new Automatic Differentiation (AD) packages allows the efficient and exact computation of the gradient of black-box models. Thus, this work proposes to solve the optimal microgrid sizing using gradient-based algorithms with AD packages. However, physical realism of the model makes the objective function discontinuous which hinders the optimization convergence. After an appropriate smoothing, the objective is still nonconvex, but convergence is achieved for more that 90 % of the starting points. This suggest that a multi-start gradient-based algorithm can improve the state-of-the-art sizing methodologies.\",\"PeriodicalId\":311595,\"journal\":{\"name\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-Europe54678.2022.9960498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Europe54678.2022.9960498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微电网规模优化通常被表述为一个黑盒优化问题。这允许用组件之间的能量流的真实时间模拟来建模微电网。由于没有梯度的解析表达式,这类模型通常采用无梯度方法进行优化。然而,新的自动微分(AD)软件包的发展使得黑盒模型梯度的高效和精确计算成为可能。因此,本工作提出使用基于梯度的算法和AD包来解决最优微电网规模问题。然而,模型的物理实在性使得目标函数不连续,阻碍了优化的收敛。经过适当的平滑后,目标仍然是非凸的,但90%以上的起点都实现了收敛。这表明基于多起点梯度的算法可以改进最先进的分级方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Microgrid Sizing using Gradient-based Algorithms with Automatic Differentiation
Microgrid sizing optimization is often formulated as a black-box optimization problem. This allows modeling the microgrid with a realistic temporal simulation of the energy flows between components. Such models are usually optimized with gradient-free methods, because no analytical expression for gradient is available. However, the development of new Automatic Differentiation (AD) packages allows the efficient and exact computation of the gradient of black-box models. Thus, this work proposes to solve the optimal microgrid sizing using gradient-based algorithms with AD packages. However, physical realism of the model makes the objective function discontinuous which hinders the optimization convergence. After an appropriate smoothing, the objective is still nonconvex, but convergence is achieved for more that 90 % of the starting points. This suggest that a multi-start gradient-based algorithm can improve the state-of-the-art sizing methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信