基于卷积神经网络的面部表情识别性能研究

Marde Fasma’ul Aza, N. Suciati, S. Hidayati
{"title":"基于卷积神经网络的面部表情识别性能研究","authors":"Marde Fasma’ul Aza, N. Suciati, S. Hidayati","doi":"10.1109/ICSITech49800.2020.9392070","DOIUrl":null,"url":null,"abstract":"Facial expression depicts human emotions. Recognition of facial expression is used in various fields, such as for a better understanding of the customer’s desires during a home design consultation and to find out the pain suffered by a patient during medical treatment. This research explores deep learning techniques based on Convolutional Neural Network (CNN) on facial expression recognition. The three pre-trained CNN models, namely VGG16, Resnet50, and Senet50, are retrained using different learning rate values and optimization functions. Trials on The Extended Cohn-Kanade Dataset (CK +) consisting of 7 expression classes, namely anger, neutral, disgust, fear, joy, sadness, and surprise, produce the best accuracy of 97% obtained by the VGG16 architecture with Adam’s optimization function and learning rate of 0.001.","PeriodicalId":408532,"journal":{"name":"2020 6th International Conference on Science in Information Technology (ICSITech)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Study of Facial Expression Recognition Using Convolutional Neural Network\",\"authors\":\"Marde Fasma’ul Aza, N. Suciati, S. Hidayati\",\"doi\":\"10.1109/ICSITech49800.2020.9392070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression depicts human emotions. Recognition of facial expression is used in various fields, such as for a better understanding of the customer’s desires during a home design consultation and to find out the pain suffered by a patient during medical treatment. This research explores deep learning techniques based on Convolutional Neural Network (CNN) on facial expression recognition. The three pre-trained CNN models, namely VGG16, Resnet50, and Senet50, are retrained using different learning rate values and optimization functions. Trials on The Extended Cohn-Kanade Dataset (CK +) consisting of 7 expression classes, namely anger, neutral, disgust, fear, joy, sadness, and surprise, produce the best accuracy of 97% obtained by the VGG16 architecture with Adam’s optimization function and learning rate of 0.001.\",\"PeriodicalId\":408532,\"journal\":{\"name\":\"2020 6th International Conference on Science in Information Technology (ICSITech)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Science in Information Technology (ICSITech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSITech49800.2020.9392070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Science in Information Technology (ICSITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSITech49800.2020.9392070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

面部表情描绘了人类的情感。面部表情的识别被用于各个领域,例如在家居设计咨询中更好地了解客户的愿望,以及在医疗过程中发现病人所遭受的痛苦。本研究探索了基于卷积神经网络(CNN)的深度学习技术在面部表情识别中的应用。使用不同的学习率值和优化函数对预训练好的三个CNN模型VGG16、Resnet50和Senet50进行再训练。在包含愤怒、中性、厌恶、恐惧、喜悦、悲伤和惊讶7个表情类的扩展Cohn-Kanade数据集(CK +)上进行试验,结果表明,使用Adam优化函数的VGG16架构获得的最佳准确率为97%,学习率为0.001。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Study of Facial Expression Recognition Using Convolutional Neural Network
Facial expression depicts human emotions. Recognition of facial expression is used in various fields, such as for a better understanding of the customer’s desires during a home design consultation and to find out the pain suffered by a patient during medical treatment. This research explores deep learning techniques based on Convolutional Neural Network (CNN) on facial expression recognition. The three pre-trained CNN models, namely VGG16, Resnet50, and Senet50, are retrained using different learning rate values and optimization functions. Trials on The Extended Cohn-Kanade Dataset (CK +) consisting of 7 expression classes, namely anger, neutral, disgust, fear, joy, sadness, and surprise, produce the best accuracy of 97% obtained by the VGG16 architecture with Adam’s optimization function and learning rate of 0.001.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信