{"title":"人工神经网络的突变检测:一个经验评价","authors":"Lorenz Klampfl, Nour Chetouane, F. Wotawa","doi":"10.1109/QRS51102.2020.00054","DOIUrl":null,"url":null,"abstract":"Testing AI-based systems and especially when they rely on machine learning is considered a challenging task. In this paper, we contribute to this challenge considering testing neural networks utilizing mutation testing. A former paper focused on applying mutation testing to the configuration of neural networks leading to the conclusion that mutation testing can be effectively used. In this paper, we discuss a substantially extended empirical evaluation where we considered different test data and the source code of neural network implementations. In particular, we discuss whether a mutated neural network can be distinguished from the original one after learning, only considering a test evaluation. Unfortunately, this is rarely the case leading to a low mutation score. As a consequence, we see that the testing method, which works well at the configuration level of a neural network, is not sufficient to test neural network libraries requiring substantially more testing effort for assuring quality.","PeriodicalId":301814,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mutation Testing for Artificial Neural Networks: An Empirical Evaluation\",\"authors\":\"Lorenz Klampfl, Nour Chetouane, F. Wotawa\",\"doi\":\"10.1109/QRS51102.2020.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Testing AI-based systems and especially when they rely on machine learning is considered a challenging task. In this paper, we contribute to this challenge considering testing neural networks utilizing mutation testing. A former paper focused on applying mutation testing to the configuration of neural networks leading to the conclusion that mutation testing can be effectively used. In this paper, we discuss a substantially extended empirical evaluation where we considered different test data and the source code of neural network implementations. In particular, we discuss whether a mutated neural network can be distinguished from the original one after learning, only considering a test evaluation. Unfortunately, this is rarely the case leading to a low mutation score. As a consequence, we see that the testing method, which works well at the configuration level of a neural network, is not sufficient to test neural network libraries requiring substantially more testing effort for assuring quality.\",\"PeriodicalId\":301814,\"journal\":{\"name\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS51102.2020.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS51102.2020.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mutation Testing for Artificial Neural Networks: An Empirical Evaluation
Testing AI-based systems and especially when they rely on machine learning is considered a challenging task. In this paper, we contribute to this challenge considering testing neural networks utilizing mutation testing. A former paper focused on applying mutation testing to the configuration of neural networks leading to the conclusion that mutation testing can be effectively used. In this paper, we discuss a substantially extended empirical evaluation where we considered different test data and the source code of neural network implementations. In particular, we discuss whether a mutated neural network can be distinguished from the original one after learning, only considering a test evaluation. Unfortunately, this is rarely the case leading to a low mutation score. As a consequence, we see that the testing method, which works well at the configuration level of a neural network, is not sufficient to test neural network libraries requiring substantially more testing effort for assuring quality.