压缩以及图像的最佳平铺

Wee Sun Lee
{"title":"压缩以及图像的最佳平铺","authors":"Wee Sun Lee","doi":"10.1109/ISIT.2000.866331","DOIUrl":null,"url":null,"abstract":"We investigate the task of compressing an image by using different probability models for compressing different regions of the image. We introduce a class of probability models for images, the k-rectangular tilings of an image, that is formed by partitioning the image into k rectangular regions and generating the coefficients within each region by using a probability model selected from a finite class of N probability models. For an image of size n/spl times/n, we give a sequential probability assignment algorithm that codes the image with a code length which is within O(k log Nn/k) of the code length produced by the best probability model in the class. The algorithm has a computational complexity of O(Nn/sup 3/). An interesting subclass of the class of k-rectangular tilings is the class of tilings using rectangles whose widths are powers of two. This class is far more flexible than quadtrees and yet has a sequential probability assignment algorithm that produces a code length that is within O(k log Nn/k) of the best model in the class with a computational complexity of O(Nn/sup 2/ log n) (similar to the computational complexity of sequential probability assignment using quadtrees).","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compressing as well as the best tiling of an image\",\"authors\":\"Wee Sun Lee\",\"doi\":\"10.1109/ISIT.2000.866331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the task of compressing an image by using different probability models for compressing different regions of the image. We introduce a class of probability models for images, the k-rectangular tilings of an image, that is formed by partitioning the image into k rectangular regions and generating the coefficients within each region by using a probability model selected from a finite class of N probability models. For an image of size n/spl times/n, we give a sequential probability assignment algorithm that codes the image with a code length which is within O(k log Nn/k) of the code length produced by the best probability model in the class. The algorithm has a computational complexity of O(Nn/sup 3/). An interesting subclass of the class of k-rectangular tilings is the class of tilings using rectangles whose widths are powers of two. This class is far more flexible than quadtrees and yet has a sequential probability assignment algorithm that produces a code length that is within O(k log Nn/k) of the best model in the class with a computational complexity of O(Nn/sup 2/ log n) (similar to the computational complexity of sequential probability assignment using quadtrees).\",\"PeriodicalId\":108752,\"journal\":{\"name\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2000.866331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们通过使用不同的概率模型来压缩图像的不同区域来研究压缩图像的任务。我们引入了一类图像的概率模型,即图像的k个矩形切片,它是通过将图像划分为k个矩形区域并使用从有限类N个概率模型中选择的概率模型在每个区域内生成系数而形成的。对于大小为n/spl * /n的图像,我们给出了一种顺序概率分配算法,该算法对图像进行编码,编码长度在该类中最佳概率模型产生的代码长度的O(k log Nn/k)以内。该算法的计算复杂度为0 (Nn/sup /)。k-矩形平铺类的一个有趣的子类是使用宽度为2的幂的矩形的平铺类。这个类比四叉树灵活得多,并且有一个顺序概率分配算法,它产生的代码长度在该类中最佳模型的O(k log Nn/k)以内,计算复杂度为O(Nn/sup 2/ log n)(类似于使用四叉树的顺序概率分配的计算复杂度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressing as well as the best tiling of an image
We investigate the task of compressing an image by using different probability models for compressing different regions of the image. We introduce a class of probability models for images, the k-rectangular tilings of an image, that is formed by partitioning the image into k rectangular regions and generating the coefficients within each region by using a probability model selected from a finite class of N probability models. For an image of size n/spl times/n, we give a sequential probability assignment algorithm that codes the image with a code length which is within O(k log Nn/k) of the code length produced by the best probability model in the class. The algorithm has a computational complexity of O(Nn/sup 3/). An interesting subclass of the class of k-rectangular tilings is the class of tilings using rectangles whose widths are powers of two. This class is far more flexible than quadtrees and yet has a sequential probability assignment algorithm that produces a code length that is within O(k log Nn/k) of the best model in the class with a computational complexity of O(Nn/sup 2/ log n) (similar to the computational complexity of sequential probability assignment using quadtrees).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信